×

On Kantorovich process of a sequence of the generalized linear positive operators. (English) Zbl 1152.41013

The Kantorovich variant of the generalized linear positive operators introduced by I. I. Ibragimov and A. D. Gadjiev [Sov. Math. Dokl. 11, 1092–1095 (1970; Zbl 0217.17302)] is defined. The direct approximation result for these operators on \(p\)-weighted integrable function is investigated and their rate of convergence of absolutely continuous functions having a derivative coinciding a.e., with a function of bounded variation is estimated also.

MSC:

41A30 Approximation by other special function classes
41A36 Approximation by positive operators
41A25 Rate of convergence, degree of approximation

Citations:

Zbl 0217.17302
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altın A., WSEAS Trans. Math. 3 pp 602– (2004)
[2] Aral A., Proc. Inst. Math. Mech. Acad. Sci. Azerb. 19 pp 35– (2003)
[3] Aral A., WSEAS Trans. Math. 4 pp 474– (2005)
[4] DOI: 10.1016/0022-247X(89)90211-4 · Zbl 0688.41008
[5] DOI: 10.1007/BF00052094 · Zbl 0772.41009
[6] Bojanic R., Atti Sem. Mat. Fis. Univ. Modena 39 pp 495– (1991)
[7] Doğru O., Tr. J. Math. 21 pp 387– (1997)
[8] Gadjiev A.D., Soviet Math. Dokl. 218 pp 1001– (1974)
[9] Gadjiev A.D., Math. Zametki. 20 pp 781– (1976)
[10] Gadjiev A.D., Proc. Inst. Math. Mech. 11 pp 45– (1999)
[11] DOI: 10.1023/A:1022967223553 · Zbl 1013.41011
[12] DOI: 10.1016/j.aml.2006.12.007 · Zbl 1132.41323
[13] Gupta V., J. Inequal. Pure Appl. Math. 4 pp 1– (2003)
[14] DOI: 10.1155/IJMMS.2005.3827 · Zbl 1093.41011
[15] Ibragimov I.I., Soviet Math. Dokl. 11 pp 1092– (1970)
[16] Pych-Taberska P., Funct. Approx. Comment. Math. 25 pp 67– (1997)
[17] Radatz P., Rev. Roum. Math. Pures et Appl. Bucarest. 23 pp 771– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.