zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Certain topological properties and duals of the domain of a triangle matrix in a sequence space. (English) Zbl 1152.46003
Summary: The matrix domain of the particular limitation methods Cesàro, Riesz, difference, summation and Euler were studied by several authors. In the present paper, certain topological properties and $\beta$- and $\gamma$-duals of the domain of a triangle matrix in a sequence space are examined as an application of the characterization of the related matrix classes.

MSC:
46A35Summability and bases in topological linear spaces
46A45Sequence spaces
40G05Cesàro, Euler, Nörlund and Hausdorff methods
40H05Functional analytic methods in summability
WorldCat.org
Full Text: DOI
References:
[1] Altay, B.; Başar, F.: Some paranormed sequence spaces of non-absolute type derived by weighted mean. J. math. Anal. appl. 319, No. 2, 494-508 (2006) · Zbl 1105.46005
[2] Altay, B.; Başar, F.: Generalization of the sequence space $\ell (p)$ derived by weighted mean. J. math. Anal. appl. 330, No. 1, 174-185 (2007) · Zbl 1116.46003
[3] Altay, B.; Başar, F.: Some new spaces of double sequences. J. math. Anal. appl. 309, No. 1, 70-90 (2005) · Zbl 1093.46004
[4] Altay, B.; Başar, F.: Some Euler sequence spaces of non-absolute type. Ukrainian math. J. 57, No. 1, 1-17 (2005)
[5] Altay, B.; Başar, F.: On the paranormed Riesz sequence spaces of non-absolute type. Southeast asian bull. Math. 26, No. 5, 701-715 (2002)
[6] Altay, B.; Başar, F.: Some paranormed riezs sequence spaces of non-absolute type. Southeast asian bull. Math. 30, 591-608 (2006)
[7] Altay, B.; Başar, F.; Mursaleen, M.: On the Euler sequence spaces which include the spaces $\ell p$ and $\ell \infty $ I. Inform. sci. 176, No. 10, 1450-1462 (2006) · Zbl 1101.46015
[8] Aydın, C.; Başar, F.: On the new sequence spaces which include the spaces c0 and c. Hokkaido math. J. 33, No. 2, 383-398 (2004)
[9] Aydın, C.; Başar, F.: Some new paranormed sequence spaces. Inform. sci. 160, No. 1 -- 4, 27-40 (2004)
[10] Aydın, C.; Başar, F.: Some new difference sequence spaces. Appl. math. Comput. 157, No. 3, 677-693 (2004) · Zbl 1072.46007
[11] Aydın, C.; Başar, F.: Some new sequence spaces which include the spaces $\ell p$ and $\ell \infty $. Demonstratio math. 38, No. 3, 641-656 (2005)
[12] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. Theory Methods Appl. 68 (2007), in press
[13] Başar, F.; Altay, B.: On the space of sequences of p-bounded variation and related matrix mappings. Ukrainian math. J. 55, No. 1, 136-147 (2003)
[14] Başarır, M.: On some new sequence spaces and related matrix transformations. Indian J. Pure appl. Math. 26, No. 10, 1003-1010 (1995) · Zbl 0855.40005
[15] &ccedil, R.; Olak; M.; ; Malkowsky, E.: Some topics of sequence spaces. Lecture notes in math. (2004)
[16] Garling, D. J. H.: On topological sequence spaces. Proc. Cambridge philos. Soc. 63, 997-1019 (1967) · Zbl 0161.10305
[17] Grosse-Erdmann, K. -G.: On $\ell 1$-invariant sequence spaces. J. math. Anal. appl. 262, 112-132 (2001) · Zbl 0998.46003
[18] Jarrah, A.; Malkowsky, E.: BK spaces, bases and linear operators. Rend. circ. Mat. Palermo (2) 52, 177-191 (1990) · Zbl 0910.40002
[19] Kamthan, P. K.; Gupta, M.: Sequence spaces and series. (1981) · Zbl 0447.46002
[20] Kızmaz, H.: On certain sequence spaces. Canad. math. Bull. 24, No. 2, 169-176 (1981)
[21] Malkowsky, E.: Recent results in the theory of matrix transformations in sequence spaces. Mat. vesnik 49, 187-196 (1997) · Zbl 0942.40006
[22] Malkowsky, E.; Savaş, E.: Matrix transformations between sequence spaces of generalized weighted means. Appl. math. Comput. 147, 333-345 (2004) · Zbl 1036.46001
[23] Ng, P. -N.; Lee, P. -Y.: Cesàro sequence spaces of non-absolute type. Comment. math. Prace mat. 20, No. 2, 429-433 (1978)
[24] &scedil, M.; Engönül; Başar, F.: Some new Cesàro sequence spaces of non-absolute type which include the spaces c0 and c. Soochow J. Math. 31, No. 1, 107-119 (2005)
[25] Wang, C. -S.: On nörlund sequence spaces. Tamkang J. Math. 9, 269-274 (1978) · Zbl 0415.46009
[26] Wilansky, A.: Summability through functional analysis. North-holland math. Stud. 85 (1984) · Zbl 0531.40008