zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Leggett--Williams theorems for coincidences of multivalued operators. (English) Zbl 1152.47041
Let $X,Y$ be Banach spaces, $C$ be a cone in $X$ and let $\Omega_1,\Omega_2$ be open bounded subsets of $X$ with $\overline{\Omega}_1\subset\Omega_2$. For a pair $(L,N)$ consisting of a linear Fredholm operator $L:\text{dom}\,L\subset X\to Y$ of zero index and an upper semicontinuous (compact convex)-valued multimap $N:X\multimap Y$, the authors study the existence of a coincidence point $(Lx \in Nx)$ in $C\cap(\overline{\Omega}_2\setminus\Omega_1)$. They use topological degree methods under some compactness or condensivity conditions. As application, the existence of positive periodic solutions for a differential inclusion is considered.

47H10Fixed-point theorems for nonlinear operators on topological linear spaces
34A60Differential inclusions
34C25Periodic solutions of ODE
47H04Set-valued operators
47H11Degree theory (nonlinear operators)
54H25Fixed-point and coincidence theorems in topological spaces
Full Text: DOI
[1] Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[2] Deimling, K.: Multivalued differential equations, (1992) · Zbl 0760.34002
[3] Cremins, C. T.: Existence theorems for semilinear equations in cones, J. math. Anal. appl. 265, 447-457 (2002) · Zbl 1015.47042 · doi:10.1006/jmaa.2001.7746
[4] Cremins, C. T.: Existence theorems for weakly inward semilinear operators, Discrete contin. Dyn. syst. (Suppl.), 200-205 (2003) · Zbl 1073.47054
[5] Gaines, R. E.; Santanilla, J.: A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations, Rocky mountain J. Math. 12, 669-678 (1982) · Zbl 0508.34030 · doi:10.1216/RMJ-1982-12-4-669
[6] Leggett, R. W.; Williams, L. R.: A fixed point theorem with application to an infectious disease model, J. math. Anal. appl. 76, 91-97 (1980) · Zbl 0448.47044 · doi:10.1016/0022-247X(80)90062-1
[7] Ma, T. W.: Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes math. (Rozprawy mat.) 92 (1972) · Zbl 0211.25903
[8] Mawhin, J.: Equivalence theorems for nonlinear operator equations and coincidence degree theory for mappings in locally convex topological vector spaces, J. differential equations 12, 610-636 (1972) · Zbl 0244.47049 · doi:10.1016/0022-0396(72)90028-9
[9] Müller, V.: Spectral theory of linear operators, (2003)
[10] O’regan, D.; Zima, M.: Leggett--Williams norm-type theorems for coincidences, Arch. math. 87, 233-244 (2006) · Zbl 1109.47051 · doi:10.1007/s00013-006-1661-6
[11] Petryshyn, W. V.: On the solvability of x$\inTx+{\lambda}$Fx in quasinormal cones with T and fk-set contractive, Nonlinear anal. 5, 585-591 (1981) · Zbl 0474.47028 · doi:10.1016/0362-546X(81)90105-X
[12] Petryshyn, W. V.: Existence of fixed points of positive k-set-contractive maps as consequences of suitable boundary conditions, J. London math. Soc. (2) 38, 503-512 (1988) · Zbl 0681.47024
[13] Santanilla, J.: Some coincidence theorems in wedges, cones, and convex sets, J. math. Anal. appl. 105, 357-371 (1985) · Zbl 0576.34018 · doi:10.1016/0022-247X(85)90053-8
[14] Tarafdar, E.; Teo, S. K.: On the existence of solutions of the equation lx$\inNx $and a coincidence degree theory, J. austral. Math. soc. Ser. A 28, 139-173 (1979) · Zbl 0431.47038
[15] Zima, M.: Leggett--Williams norm-type fixed point theorems, Dynam. systems appl. 14, 551-560 (2005) · Zbl 1098.47048