zbMATH — the first resource for mathematics

On the construction of copulas and quasi-copulas with given diagonal sections. (English) Zbl 1152.60311
Summary: We study a method, which we call a copula (or quasi-copula) diagonal splice, for creating new functions by joining portions of two copulas (or quasi-copulas) with a common diagonal section. The diagonal splice of two quasi-copulas is always a quasi-copula, and we find a necessary and sufficient condition for the diagonal splice of two copulas to be a copula. Applications of this method include the construction of absolutely continuous asymmetric copulas with a prescribed diagonal section, and determining the best-possible upper bound on the set of copulas with a particular type of diagonal section. Several examples illustrate our results.

60E15 Inequalities; stochastic orderings
62E10 Characterization and structure theory of statistical distributions
62H20 Measures of association (correlation, canonical correlation, etc.)
Full Text: DOI
[1] Abdous, B.; Fougères, A.-L.; Ghoudi, K., Extreme behaviour for bivariate elliptical distributions, The Canadian journal of statistics, 33, 317-334, (2005) · Zbl 1096.62053
[2] Ané, T.; Kharoubi, C., Dependence structure and risk measure, Journal of business, 76, 411-438, (2003)
[3] Alsina, C.; Nelsen, R.B.; Schweizer, B., On the characterization of a class of binary operations on distribution functions, Statistics & probability letters, 17, 85-89, (1993) · Zbl 0798.60023
[4] Bäuerle, N.; Müller, A., Modelling and comparing dependencies in multivariate risk portfolios, Astin bulletin, 28, 59-67, (1998) · Zbl 1137.91484
[5] Bertino, S., Sulla dissomiglianza tra mutabili cicliche, Metron, 35, 53-88, (1977) · Zbl 0437.62026
[6] Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R., Actuarial theory for dependent risk: measures, orders and models, (2005), John Wiley & Sons
[7] Durante, F., Mesiar, R., Sempi, C., 2005. Copulas with given diagonal section: Some new results. In: Proceedings of EUSFLAT-LFA Conference. Barcelona, pp. 931-936
[8] Durante, F.; Kolesárová, A.; Mesiar, R.; Sempi, C., Copulas with given diagonal sections: novel constructions and applications, International journal of uncertainty, fuzziness and knowledge-based systems, 15, 397-410, (2007) · Zbl 1158.62324
[9] Embrechts, P.; McNeil, A.J.; Straumann, D., Correlation and dependence in risk management: properties and pitfalls, (), 176-223
[10] Frahm, G.; Junker, M.; Schmidt, R., Estimating the tail dependence coefficient: properties and pitfalls, Insurance: mathematics and economics, 37, 80-100, (2005) · Zbl 1101.62012
[11] Frahm, G.; Junker, M.; Szimayer, A., Elliptical copulas: applicability and limitations, Statistics & probability letters, 63, 275-286, (2003) · Zbl 1116.62352
[12] Fredricks, G.A.; Nelsen, R.B., Copulas constructed from diagonal sections, (), 129-136 · Zbl 0906.60022
[13] Fredricks, G.A.; Nelsen, R.B., The bertino family of copulas, (), 81-92 · Zbl 1135.62334
[14] Frees, E.W.; Valdez, E., Understanding relationships using copulas, North American actuarial journal, 2, 1-25, (1998) · Zbl 1081.62564
[15] Genest, C.; Quesada-Molina, J.J.; Rodríguez-Lallena, J.A.; Sempi, C., A characterization of quasi-copulas, Journal of multivariate analysis, 69, 193-205, (1999) · Zbl 0935.62059
[16] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall London · Zbl 0990.62517
[17] Klugman, S.A.; Parsa, R., Fitting bivariate loss distributions with copulas, Insurance: mathematics and economics, 24, 139-148, (1999) · Zbl 0931.62044
[18] Malevergne, Y.; Sornette, D., Extreme financial risks. from dependence to risk management, (2006), Springer-Verlag Berlin · Zbl 1093.62098
[19] Mikusiński, P.; Sherwood, H.; Taylor, M.D., Shuffles of MIN. stochastica, 13, 61-74, (1992) · Zbl 0768.60017
[20] Nelsen, R.B., An introduction to copulas, (2006), Springer New York · Zbl 1152.62030
[21] Nelsen, R.B.; Fredricks, G.A., Diagonal copulas, (), 121-128 · Zbl 0906.60021
[22] Nelsen, R.B.; Quesada-Molina, J.J.; Rodríguez-Lallena, J.A., Bivariate copulas with cubic sections, Journal of nonparametric statistics, 7, 205-220, (1997) · Zbl 0898.62074
[23] Nelsen, R.B.; Quesada-Molina, J.J.; Rodríguez-Lallena, J.A.; Úbeda-Flores, M., Distribution functions of copulas: A class of bivariate probability integral transforms, Statistics & probability letters, 54, 277-282, (2001) · Zbl 0992.60020
[24] Nelsen, R.B.; Quesada-Molina, J.J.; Rodríguez-Lallena, J.A.; Úbeda-Flores, M., Best-possible bounds on sets of bivariate distribution functions, Journal of multivariate analysis, 90, 348-358, (2004) · Zbl 1057.62038
[25] Nelsen, R.B.; Quesada-Molina, J.J.; Schweizer, B.; Sempi, C., Derivability of some operations on distribution functions, (), 233-243
[26] Nelsen, R.B.; Úbeda-Flores, M., The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas, Comptes rendus mathématique, 341, 583-586, (2005) · Zbl 1076.62053
[27] Rodríguez-Lallena, J.A.; Úbeda-Flores, M., Best-possible bounds on sets of multivariate distribution functions, Communications in statistics – theory and methods, 33, 805-820, (2004) · Zbl 1066.62056
[28] Schmidt, R., Tail dependence for elliptically contoured distributions, Mathematical methods of operations research, 55, 301-327, (2002) · Zbl 1015.62052
[29] Sklar, A., Fonctions de répartition à n dimensions et leurs marges, Publications de l’institut de statistique de l’université de Paris, 8, 229-231, (1959) · Zbl 0100.14202
[30] Úbeda-Flores, M., 2001. Cópulas y cuasicópulas: interrelaciones y nuevas propiedades. Aplicaciones (Ph.D. Dissertation). Servicio de Publicaciones de la Universidad de Almería, Spain
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.