Drton, Mathias; Massam, Hélène; Olkin, Ingram Moments of minors of Wishart matrices. (English) Zbl 1152.62343 Ann. Stat. 36, No. 5, 2261-2283 (2008). Summary: For a random matrix following a Wishart distribution, we derive formulas for the expectation and the covariance matrix of compound matrices. The compound matrix of order \(m\) is populated by all \(m\times m\)-minors of the Wishart matrix. Our results yield first and second moments of the minors of the sample covariance matrix for multivariate normal observations. This work is motivated by the fact that such minors arise in the expression of constraints on the covariance matrix in many classical multivariate problems. Cited in 1 ReviewCited in 16 Documents MSC: 62H10 Multivariate distribution of statistics 15B52 Random matrices (algebraic aspects) 60E05 Probability distributions: general theory Keywords:compound matrix; graphical models; multivariate analysis; random determinant; random matrix; tetrad Software:TETRAD; SAS × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Aitken, A. C. (1956). Determinants and Matrices , 9th ed. Oliver and Boyd, Edinburgh. · Zbl 0022.10005 [2] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis , 3rd ed. Wiley, Hoboken, NJ. · Zbl 1039.62044 [3] Bollen, K. A. and Ting, K. (1993). Confirmatory tetrad analysis. In Sociological Methodology (P. M. Marsden, ed.) 147-75. American Sociological Association, Washington, DC. [4] Casalis, M. and Letac, G. (1996). The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones. Ann. Statist. 24 763-786. · Zbl 0906.62053 · doi:10.1214/aos/1032894464 [5] Cox, D., Little, J. and O’Shea, D. (1997). Ideals , Varieties , and Algorithms , 2nd ed. Springer, New York. [6] Drton, M., Sturmfels, B. and Sullivant, S. (2007). Algebraic factor analysis: Tetrads, pentads and beyond. Probab. Theory Related Fields 138 463-493. · Zbl 1111.13020 · doi:10.1007/s00440-006-0033-2 [7] Eaton, M. L. (1983). Multivariate Statistics . Wiley, New York. · Zbl 0587.62097 [8] Hipp, J. R., Bauer, D. J. and Bollen, K. A. (2005). Conducting tetrad tests of model fit and contrasts of tetrad-nested models: A new SAS macro. Struct. Equ. Model. 12 76-93. · doi:10.1207/s15328007sem1201_4 [9] Holzinger, K. J. and Harman, H. H. (1941). Factor Analysis. A Synthesis of Factorial Methods . Univ. Chicago Press. · Zbl 0060.31208 [10] Lauritzen, S. L. (1996). Graphical Models . Oxford Univ. Press, New York. · Zbl 0907.62001 [11] Marshall, A. W. and Olkin, I. (1979). Inequalities : Theory of Majorization and Its Applications . Academic Press, New York. · Zbl 0437.26007 [12] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory . Wiley, New York. · Zbl 0556.62028 [13] Olkin, I. and Rubin, H. (1962). A characterization of the Wishart distribution. Ann. Math. Statist. 33 1272-1280. · Zbl 0111.34202 · doi:10.1214/aoms/1177704359 [14] Spearman, C. (1927). The Abilities of Man , Their Nature and Measurement . Macmillan & Co., London. · JFM 53.0521.13 [15] Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation , Prediction , and Search , 2nd ed. MIT Press, Cambridge, MA. · Zbl 0806.62001 [16] Wishart, J. (1928). Sampling errors in the theory of two factors. British J. Psychology 19 180-187. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.