×

Blow-up and control of marginally separated boundary layers. (English) Zbl 1152.76371

Summary: Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value \(\Gamma _{c}\) of the controlling parameter (e.g. the angle of attack of a slender airfoil) \(\Gamma \) only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit \(\Gamma _{c} - \Gamma \rightarrow 0\). It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D55 Flow control and optimization for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alam, M. & Sandham, N.D. 2000 Direct numerical simulation of ’short’ laminar separation bubbles with turbulent reattachment. <i>J. Fluid Mech.</i>&nbsp;<b>410</b>, 1–28. · Zbl 0959.76035
[2] Borodulin, V.I., Gaponenko, V.R., Kachanov, Y.S., Meyer, D.G.W., Rist, U., Lian, Q.X. & Lee, C.B. 2002 Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. <i>Theor. Comput. Fluid Dyn.</i>&nbsp;<b>15</b>, 317–337. · Zbl 1057.76529
[3] Braun, S. & Kluwick, A. 2004 Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction. <i>J. Fluid Mech.</i>&nbsp;<b>514</b>, 121–152. · Zbl 1067.76028
[4] Braun, S., Kluwick, A. & Trenker, M. 2003 Leading edge separation: a comparison between interaction theory and Navier–Stokes computations. <i>Proceedings of the GAMM 2002 Conference, Augsburg 2002. Proc. Appl. Math. Mech.</i>&nbsp;<b>2</b>, 312–313. · Zbl 1201.76164
[5] Gerhold, T., Galle, M., Friedrich, O. & Evans, J. 1997 Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA Paper 1997-0167. Reston, VA: American Institute of Aeronautics and Astronautics.
[6] Hocking, L.M., Stewartson, K., Stuart, J.T. & Brown, S.N. 1972 A nonlinear instability burst in plane parallel flow. <i>J. Fluid Mech.</i>&nbsp;<b>51</b>, 705–735. · Zbl 0232.76053
[7] Mary, I. & Sagaut, P. 2002 Large eddy simulation of flow around an airfoil near stall. <i>AIAA J.</i>&nbsp;<b>40</b>, 1139–1145.
[8] Ruban, A.I. 1981 Asymptotic theory of short separation regions on the leading edge of a slender airfoil. <i>Izv. Akad. Nauk SSSR: Mekh. Zhidk. Gaza</i>&nbsp;<b>1</b>, 42–51. [English transl. <i>Fluid Dyn.</i>&nbsp;<b>17</b>, 33–41.].
[9] Stewartson, K., Smith, F.T. & Kaups, K. 1982 Marginal separation. <i>Stud. Appl. Math.</i>&nbsp;<b>67</b>, 45–61.
[10] Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three dimensional flows. <i>Prog. Aerosp. Sci.</i>&nbsp;<b>39</b>, 249–315.
[11] Weideman, J.A.C. 2003 Computing the dynamics of complex singularities of nonlinear PDEs. <i>SIAM J. Appl. Dyn. Syst.</i>&nbsp;<b>2</b>, 171–186. · Zbl 1088.65582
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.