×

Fractional actionlike variational problems. (English) Zbl 1152.81422

Summary: Fractional actionlike variational problems have recently gained importance in studying dynamics of nonconservative systems. In this note we address multidimensional fractional actionlike problems of the calculus of variations.

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
26A33 Fractional derivatives and integrals
70H30 Other variational principles in mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/S0022-247X(02)00180-4 · Zbl 1070.49013
[2] DOI: 10.1007/s11071-004-3755-7 · Zbl 1142.74302
[3] Baleanu D., Nuovo Cimento Soc. Ital. Fis., B 119 pp 73– (2004)
[4] DOI: 10.1007/s11071-007-9281-7 · Zbl 1170.70328
[5] DOI: 10.1063/1.2483292 · Zbl 1137.37322
[6] El-Nabulsi R. A., Fiz. A 14 pp 289– (2005)
[7] El-Nabulsi R. A., Int. J. Appl. Math. 17 pp 299– (2005)
[8] El-Nabulsi R. A., Int. J. Appl. Math. Stat. 5 pp 50– (2006)
[9] El-Nabulsi R. A., Electron. J. Theor. Phys. 4 pp 157– (2007)
[10] El-Nabulsi R. A., Rom. J. Phys. 52 pp 705– (2007)
[11] El-Nabulsi R. A., Rom. Rep. Phys. 59 pp 759– (2007)
[12] El-Nabulsi R. A., Scientific Proceedings of Riga Technical University, Series–Computer Science, Boundary Field Problems, and Computer Simulation, 48th Thematic issue pp 189– (2006)
[13] DOI: 10.1002/mma.879 · Zbl 1177.49036
[14] Frederico G. S. F., Int. J. Appl. Math 19 pp 97– (2006)
[15] Frederico G. S. F., Int. J. Ecol. Econ. Stat. 9 pp 74– (2007)
[16] DOI: 10.1016/j.jmaa.2007.01.013 · Zbl 1119.49035
[17] Frederico G. S. F., WSEAS Trans. Math. 7 pp 6–
[18] DOI: 10.1007/978-3-7091-2664-6_5
[19] Kilbas A. A., Theory and Applications of Fractional Differential Equations (2006) · Zbl 1138.26300
[20] DOI: 10.1023/A:1013378221617 · Zbl 1064.70507
[21] DOI: 10.1007/s10582-006-0024-7
[22] Magin R. L., Crit. Rev. Biomed. Eng. 32 pp 110– (2004)
[23] Magin R. L., Crit. Rev. Biomed. Eng. 32 pp 90– (2004)
[24] Magin R. L., Crit. Rev. Biomed. Eng. 32 pp 194– (2004)
[25] Oldham K. B., The Fractional Calculus (1974) · Zbl 0292.26011
[26] DOI: 10.1103/PhysRevE.53.1890
[27] DOI: 10.1103/PhysRevE.55.3581
[28] Samko S. G., Fractional Integrals and Derivatives (1993)
[29] DOI: 10.2298/PIM0694259S · Zbl 1246.26008
[30] Tarasov V. E., J. Phys. A 39 pp 8425– (2006)
[31] DOI: 10.1088/0305-4470/38/26/007 · Zbl 1074.70012
[32] Udriste C., Analele Universitatii Bucuresti 55 pp 179– (2005)
[33] Udriste C., WSEAS Trans. Math. 6 pp 701– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.