zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximate similarity reduction for singularly perturbed Boussinesq equation via symmetry perturbation and direct method. (English) Zbl 1152.81493
Summary: We investigate the singularly perturbed Boussinesq equation in terms of the approximate symmetry perturbation method and the approximate direct method. The similarity reduction solutions and similarity reduction equations of different orders display formal coincidence for both methods. Series reduction solutions are consequently derived. For the approximate symmetry perturbation method, similarity reduction equations of the zero order are equivalent to the Painlevé IV, Painlevé I, and Weierstrass elliptic equations. For the approximate direct method, similarity reduction equations of the zero order are equivalent to the Painlevé IV, Painlevé II, Painlevé I, or Weierstrass elliptic equations. The approximate direct method yields more general approximate similarity reductions than the approximate symmetry perturbation method.

35Q53KdV-like (Korteweg-de Vries) equations
34C14Symmetries, invariants (ODE)
34M55Painlevé and other special equations; classification, hierarchies
35A30Geometric theory for PDE, characteristics, transformations
Full Text: DOI