zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A robust algorithm for generalized geometric programming. (English) Zbl 1152.90613
Summary: Most existing methods of global optimization for generalized geometric programming (GGP) actually compute an approximate optimal solution of a linear or convex relaxation of the original problem. However, these approaches may sometimes provide an infeasible solution, or far from the true optimum. To overcome these limitations, a robust solution algorithm is proposed for global optimization of (GGP) problem. This algorithm guarantees adequately to obtain a robust optimal solution, which is feasible and close to the actual optimal solution, and is also stable under small perturbations of the constraints.

90C30Nonlinear programming
Full Text: DOI
[1] Avriel M. and Williams A.C. (1971). An extension of geometric programming with applications in engineering optimization. J. Eng. Math. 5(3): 187--199 · doi:10.1007/BF01535411
[2] Jefferson T.R. and Scott C.H. (1978). Generalized geometric programming applied to problems of optimal control: I. Theory. J. Optim. Theory Appl. 26: 117--129 · Zbl 0369.90120 · doi:10.1007/BF00933274
[3] Nand K.J. (1995). Geometric programming based robot control design. Comput. Indust. Eng. 29(1--4): 631--635 · doi:10.1016/0360-8352(95)00146-R
[4] Das K., Roy T.K. and Maiti M. (2000). Multi-item inventory model with under imprecise objective and restrictions: a geometric programming approach. Production Plan. Control 11(8): 781--788 · doi:10.1080/095372800750038382
[5] Jae Chul C. and Bricker Dennis L. (1996). Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 23(10): 957--961 · Zbl 0873.90043 · doi:10.1016/0305-0548(96)00008-1
[6] EI Barmi H. and Dykstra R.L. (1994). Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Stat. Probab. Lett. 21: 121--130 · Zbl 0801.62033 · doi:10.1016/0167-7152(94)90219-4
[7] Bricker D.L., Kortanek K.O. and Xu L. (1995). Maximum Likelihood Estimates with Order Restrictions on Probabilities and Odds Ratios: A Geometric Programming Approach. Applied Mathematical and Computational Sciences, the University of IA, Iowa City, IA · Zbl 0953.62027
[8] Jagannathan R. (1990). A stochastic geometric programming problem with multiplicative recourse. Oper. Res. Lett. 9: 99--104 · Zbl 0703.90069 · doi:10.1016/0167-6377(90)90048-A
[9] Sönmez A.I., Baykasoglu A., Dereli T. and Filiz I.H. (1999). Dynamic optimization of multipass milling operations via geometric programming. Int. J. Machine Tools Manuf. 39: 297--320 · doi:10.1016/S0890-6955(98)00027-3
[10] Scott C.H. and Jefferson T.R. (1995). Allocation of resources in project management. Int. J. Syst. Sci. 26: 413--420 · Zbl 0821.90069 · doi:10.1080/00207729508929042
[11] Maranas C.D. and Floudas C.A. (1997). Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4): 351--369 · doi:10.1016/S0098-1354(96)00282-7
[12] Rijckaert M.J. and Martens X.M. (1974). Analysis and optimization of the Williams-Otto process by geometric programming. AICHE J 20(4): 742--750 · doi:10.1002/aic.690200416
[13] Shen P. and Zhang K. (2004). Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150: 99--114 · Zbl 1053.90112 · doi:10.1016/S0096-3003(03)00200-5
[14] Wang Y., Zhang K. and Gao Y. (2004). Global optimization of generalized geometric programming. Comput. Math. Appl. 48: 1505--1516 · Zbl 1066.90096 · doi:10.1016/j.camwa.2004.07.008
[15] Tuy H. (2005). Robust solution of nonconvex global optimization problems. J. Glob. Optim. 32: 357--374 · Zbl 1123.90059
[16] Tuy H. (2000). Monotonic optimization: problems and solution approaches. SIAM J. Optim. 11(2): 464--494 · Zbl 1010.90059 · doi:10.1137/S1052623499359828
[17] Tuy H., Al-Khayyal F. and Thach P.T. (2005). Monotonic optimization: branch and cut methods. In: Audet, C., Hansen, P., and Savard, G. (eds) Essays and Surveys on Global Optimization, pp 39--38. Springer, Berlin · Zbl 1136.90446
[18] Qu S.-J., Zhang K.-C. and Ji Y. (2007). A new global optimization algorithm for signomial geometric programming via Lagrangian relaxation. Appl. Math. Comput. 184(2): 886--894 · Zbl 1116.65071 · doi:10.1016/j.amc.2006.05.208
[19] Wang Y. and Liang Z. (2005). A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168: 722--737 · Zbl 1105.65335 · doi:10.1016/j.amc.2005.01.142
[20] Shen P. and Jiao H. (2006). A new rectangle branch-and-pruning approach for generalized geometric programming. Appl. Math. Comput. 183: 1027--1038 · Zbl 1112.65058 · doi:10.1016/j.amc.2006.05.137
[21] Tuy H. (2005). Polynomial optimization: a robust approach. Pacific J. Optim. 1: 357--374 · Zbl 1105.90066