Forecasting the path of China’s CO\(_2\) emissions using province-level information. (English) Zbl 1152.91690

Summary: Our results suggest that the anticipated path of China’s carbon dioxide (CO\(_{2})\) emissions has dramatically increased over the last five years. The magnitude of the projected increase in Chinese emissions out to 2010 is several times larger than reductions embodied in the Kyoto Protocol. Our estimates are based on a unique provincial-level panel data set from the Chinese Environmental Protection Agency. This data set contains considerably more information relevant to the path of likely Chinese greenhouse gas emissions than national level time series currently in use. Model selection criteria clearly reject the popular static environmental Kuznets curve specification in favor of a class of dynamic models with spatial dependence.


91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
91B84 Economic time series analysis
Full Text: DOI


[1] Agras, J.; Chapman, D.: A dynamic approach to the environmental kuznets curve, Ecolog. econ. 28, 267-277 (1999)
[2] Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C. S.; Jansson, B. O.; Levin, S.; Mäler, K. G.; Perrings, C.; Pimentel, D.: Economic growth, carrying capacity, and the environment, Science 268, 520-521 (1995)
[3] M. Auffhammer, R.T. Carson, T. Garin-Muñoz, Forecasting China’s long run carbon dioxide emissions: a provincial approach, Paper Presented to the Second World Congress of Environmental and Resource Economists, Monterey, CA, 2002.
[4] Auffhammer, M.; Steinhauser, R.: The future trajectory of US CO2 emissions: the role of state vs. Aggregate information, J. reg. Sci. 47, No. 5 (2007)
[5] M. Auffhammer, R. Steinhauser, Snooping Kuznets: how to select a forecasting model for carbon dioxide emissions, Department of Agricultural and Resource Economics, UC Berkeley, CUDARE Working Paper, 2007.
[6] Benford, F.: The law of anomalous numbers, Proc. amer. Philos. soc. 78, No. 4, 551-572 (1938) · Zbl 0018.26502
[7] Binswanger, H.: A cost function approach to the measurement of elasticities of factor demand and elasticities of substitution, Amer. J. Agr. econ. 56, No. 2, 377-386 (1974)
[8] Böhringer, C.; Conrad, K.; Löschel, A.: Carbon taxes and joint implementation. An applied general equilibrium analysis for Germany and India, Environ. resource econ. 24, No. 1, 49-76 (2003)
[9] Calmfors, L.; Forslund, A.: Real-wage determination and labour market policies: the swedish experience, Econ. J. 101, No. 408, 1130-1148 (1991)
[10] Carson, R. T.; Cenesizoglu, T.; Parker, R.: Aggregation issues in forecasting aggregate demand: an application to U.S. Commercial air travel, (2005)
[11] Carson, R. T.; Jeon, Y.; Mccubbin, D. R.: The relationship between air pollution emissions and income: US data, Environ. devel. Econ. 2, 433-450 (1997)
[12] J.C. Chesnais, M. Sun, L’avenir Démographique des Provinces Chinoises À L’horizon 2020 et 2050, Paris, France, 1998.
[13] Copeland, B. R.; Taylor, M. S.: Trade, growth, and the environment, J. econ. Lit. 42, 7-71 (2004)
[14] Dasgupta, S.; Laplante, B.; Wang, H.; Wheeler, D.: Confronting the environmental kuznets curve, J. econ. Perspect. 16, No. 1, 147-168 (2002)
[15] De Marchi, S.; Hamilton, J. T.: Assessing the accuracy of self-reported data: an evaluation of the toxics release inventory, J. risk uncertainty 32, No. 1, 57-76 (2006)
[16] Diebold, F. X.: Elements of forecasting, (2001)
[17] Ehrlich, P. R.; Holdren, J. P.: Impact of population growth, Science 171, No. 3977, 1212-1217 (1971)
[18] Energy Research Institute, China’s sustainable energy future: scenarios of energy and carbon emissions, Technical Report, Lawrence Berkeley National Laboratory, 2004.
[19] D. Fridley, China’s energy future to 2020, Technical Report, Lawrence Berkeley National Laboratory, 2006.
[20] Garbaccio, R. F.; Ho, M. S.; Jorgenson, D. W.: Controlling carbon emissions in China, Environ. devel. Econ. 4, 493-518 (1999)
[21] Garbaccio, R. F.; Ho, M. S.; Jorgenson, D. W.: Why has the energy-output ratio fallen in China, Energy J. 20, 63-91 (1999)
[22] Giacomini, R.; Granger, C. W.: Aggregation of space – time processes, J. econometrics 118, 7-26 (2004) · Zbl 1034.62092
[23] Grossman, G. M.; Krueger, A.: Economic growth and the environment, Quart. J. Econ. 112, 353-377 (1995) · Zbl 0831.90040
[24] T.J. Hastie, R.J. Tibshirani, Generalized Additive Models, Monographs on Statistics and Applied Probability, vol. 43, Chapman & Hall, New York, 1990. · Zbl 0747.62061
[25] D. Hendry, Econometric methodology, Paper Presented to the Econometric Society Fifth World Congress, MIT, Cambridge, MA, 1985.
[26] Ho, M. S.; Jorgenson, D. W.; Perkins, D. H.: China’s economic growth and carbon emissions, Energizing China: reconciling environmental protection and economic growth (1998)
[27] Holdren, J. P.: Commentary: environmental degradation: population, affluence, technology, and sociopolitical factors, Environment 42, No. 6, 4-5 (2000)
[28] Holtz-Eakin, D.; Selden, T. M.: Stoking the fires? CO2 emissions and economic growth, J. public econ. 57, 85-101 (1995)
[29] Houthakker, H.; Taylor, L.: Consumer demand in the united states, (1970)
[30] Intergovernmental Panel on Climate Change, Emissions Scenarios, Cambridge University Press, Cambridge, UK, 2000.
[31] Intergovernmental Panel on Climate Change, Climate Change 2001: Impacts, Adaptation & Vulnerability, New York, 2001.
[32] Jiang, K.; Hu, X.: Energy demand and emissions in 2030 in China: scenarios and policy options, Environ. Pol stud. 7, 233-250 (2006)
[33] G. Judge, L. Schechter, Detecting problems in survey data using Benford’s law, J. Human Res., 2009.
[34] Lieb, C. M.: The environmental kuznets curve and flow versus stock pollution: the neglect of future damages, Environ. resource econ. 29, No. 4, 483-507 (2004)
[35] Maddison, D.: Environmental kuznets curves: a spatial econometric approach, J. environ. Econ. manage. 51, No. 2, 218-230 (2006) · Zbl 1136.91551
[36] Marcellino, M.; Stock, J. H.; Watson, M. W.: Macroeconomic forecasting in the euro area: country specific versus area-wide information, Europ. econ. Rev. 47, No. 1, 1-18 (2003)
[37] G. Marland, T. Boden, R.J. Andres, Global, regional, and national fossil fuel CO2 emissions, Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA, 2005.
[38] MIT, The future of coal. Options for a carbon constrained world, Technical Report, Massachusetts Institute of Technology, Cambridge, MA, 2007 \langle http://web.mit.edu/coal/\rangle .
[39] Netherlands Environmental Assessment Agency, China now no. 1 in CO2 emissions; USA in second position, Technical Report, Den Hague, Netherlands, 2007.
[40] Panayotou, T.; Sachs, J. D.; Zwane, A. P.: Compensation for meaningful participation in climate change control: a modest proposal and empirical analysis, J. environ. Econ. manage. 43, No. 3, 437-454 (2002) · Zbl 1024.91509
[41] Pesaran, M. H.; Smith, R.: Estimating long run relationships from dynamic heterogeneous panels, J. econometrics 79 – 113, 1212-1217 (1995) · Zbl 0832.62104
[42] Schmalensee, R.; Stoker, T. M.; Judson, R. A.: World carbon dioxide emissions 1950 – 2050, Rev. econ. Statist. 80, No. 1, 15-27 (1998)
[43] T.A. Siddiqi, D. Streets, Z. Wu, J. He, National response strategy for global climate change: People’s Republic of China, Working Paper, East West Center, Argonne Laboratory, Tsinghua University, 1994.
[44] Sinton, J.: Accuracy and reliability of China’s energy statistics, China econ. Rev. 12, No. 4, 373-383 (1991)
[45] Sinton, J. E.; Fridley, D. G.: What goes up: recent trends in China’s energy consumption, Energy policy 28, No. 10, 671-687 (2000)
[46] Sinton, J. E.; Levine, M.: Changing energy intensity in chinese industry: the relative importance of structural shifts and intensity change, Energy policy 22, 239-255 (1994)
[47] State Statistical Bureau of the People’s Republic of China, China Statistical Yearbooks, Beijing, 1986 – 2005.
[48] N. Stern, Stern review on the economics of climate change, Technical Report, HM Treasury, 2006.
[49] United States Department of Energy, International Energy Outlook, Energy Information Administration, Washington, DC, 2006.
[50] Yang, C.; Schneider, S. H.: Global carbon dioxide emissions scenarios: sensitivity to social and technological factors in three regions, Mitigation adaptation strategies global change 2, 373-404 (1998)
[51] Zhang, C.; May, M.; Heller, T.: Impact on global warming of development and structural changes in electricity sector of guangdong province, China, Energy policy 29, No. 3, 179-203 (2001)
[52] Zhang, Z.: The economics of energy policy in China, (1998)
[53] Zhang, Z.: Decoupling China’s carbon emissions increase from economic growth: an economic analysis and policy implications, World devel. 28, No. 4, 739-752 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.