zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Filtering for a class of nonlinear discrete-time stochastic systems with state delays. (English) Zbl 1152.93053
For a class of nonlinear discrete time stochastic systems with state delays, the filtering problem is investigated. The researchers developed an algebraic matrix inequality approach to deal with the filter analysis problem, then, they derived a sufficient condition for the existence of the desired filters. The filter design problem is tackled based on the generalized inverse theory. An empirical example is provided to demonstrate the importance of the proposed design method.

93E11Filtering in stochastic control
93C55Discrete-time control systems
93C10Nonlinear control systems
93E03General theory of stochastic systems
15A45Miscellaneous inequalities involving matrices
15A29Inverse problems in matrix theory
Full Text: DOI
[1] Ben-Israel, A.; Greville, T. N. E.: Generalized inverses: theory and applications. (1974) · Zbl 0305.15001
[2] E. Beran, K. Grigoriadis, A combined alternating projections and semidefinite programming algorithm for low-order control design, in: Preprints of 13th IFAC World Congress, vol. C, San Francisco, CA, USA, 1996, pp. 85 -- 90.
[3] Boukas, E. K.; Liu, Z. -K.: Deterministic and stochastic time-delay systems. (2002) · Zbl 1056.93001
[4] Elanayar, V. T. S.; Shin, Y. C.: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE trans. Neural networks 5, 594-603 (1994)
[5] Fleming, W. H.; Mceneaney, W. M.: A MAX-plus-based algorithm for a Hamilton -- Jacobi -- Bellman equation of nonlinear filtering. SIAM J. Control optim. 38, 683-710 (2000) · Zbl 0949.35039
[6] Fridman, E.; Shaked, U.; Xie, L.: Robust H2 filtering of linear systems with time delays. Int. J. Robust & nonlinear control 13, 983-1010 (2003)
[7] Gelb, A.: Applied optimal estimation. (1974)
[8] J.C. Geromel, P.L.D. Peres, S.R. Souza, Output feedback stabilization of uncertain systems through a min/max problem, in: Preprints of 12th IFAC World Congress, vol. 6, Sydney, Australia, 1993, pp. 35 -- 38.
[9] Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L$\infty $-error bounds. Int. J. Control 39, 1115-1193 (1984) · Zbl 0543.93036
[10] Nguang, S. K.; Shi, P.: Nonlinear H$\infty $ filtering of sampled-data systems. Automatica 36, 303-310 (2000) · Zbl 0943.93041
[11] Nguang, S. K.; Shi, P.: H$\infty $ filtering design for uncertain nonlinear systems under sampled measurements. Int. J. Systems sci. 32, 889-898 (2001) · Zbl 1010.93102
[12] Saberi, A.; Sannuti, P.; Chen, B. M.: H2 optimal control. (1995) · Zbl 0876.93001
[13] Tarn, T. -J.; Rasis, Y.: Observers for nonlinear stochastic systems. IEEE trans. Automat. control 21, 441-448 (1976) · Zbl 0332.93075
[14] Wang, Z.; Burnham, K. J.: Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation. IEEE trans. Signal process. 49, 794-804 (2001)
[15] Wang, Z.; Ho, D. W. C.: Filtering on nonlinear time-delay stochastic systems. Automatica 39, 101-109 (2003) · Zbl 1010.93099
[16] Wang, Z.; Lam, J.; Liu, X.: Nonlinear filtering for state delayed systems with Markovian switching. IEEE trans. Signal process. 51, 2321-2328 (2003)
[17] Xie, L.; Soh, Y. C.; De Souza, C. E.: Robust Kalman filtering for uncertain discrete-time systems. IEEE trans. Automat. control 39, 1310-1314 (1994) · Zbl 0812.93069
[18] S. Xu, J. Lam, Robust output feedback stabilization of uncertain discrete time-delay stochastic systems with multiplicative noise, Dynamics Continuous Discrete Impulsive Systems 12 (2005) 41 -- 58. · Zbl 1105.93060
[19] Yuan, C.; Mao, X.: Robust stability and controllability of stochastic differential delay equations with Markovian switching. Automatica 40, No. 3, 343-354 (2004) · Zbl 1040.93069
[20] Zhu, X.; Soh, Y. C.; Xie, L.: Robust Kalman filters design for discrete time-delay systems. Circuits systems signal process. 21, No. 3, 319-335 (2002) · Zbl 1022.93047