[1] |
Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004 |

[2] |
Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE transactions on automatic control 43, No. 4, 475-782 (1998) · Zbl 0904.93036 |

[3] |
Daafouz, J.; Riedinger, P.; Iung, C.: Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach. IEEE transactions on automatic control 47, No. 11, 1883-1887 (2002) |

[4] |
De Koning, W.: Digital optimal reduced-order control of pulse-width-modulated switched linear systems. Automatica 39, No. 11, 1997-2003 (2003) |

[5] |
De Oliveira, M. C.; Bernussou, J.; Geromel, J. C.: A new discrete-time robust stability condition. Systems & control letters 37, No. 4, 261-265 (1999) · Zbl 0948.93058 |

[6] |
Dolgin, Y., & Zeheb, E. (2003). Model reduction of uncertain systems: Approximation by uncertain system. In Proc. IEEE 42nd conf. decision and control(pp. 5259-5264) |

[7] |
Ebihara, Y.; Hagiwara, T.: On H$\infty $model reduction using lmis. IEEE transactions on automatic control 49, No. 7, 1187-1191 (2004) |

[8] |
Feron, E.; Apkarian, P.; Gahinet, P.: Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE transactions on automatic control 41, No. 7, 1041-1046 (1996) · Zbl 0857.93088 |

[9] |
Ferrari-Trecate, G.; Cuzzola, F. A.; Mignone, D.; Morari, M.: Analysis of discrete-time piecewise affine and hybrid systems. Automatica 38, No. 12, 2139-2146 (2002) · Zbl 1010.93090 |

[10] |
Gao, H. J.; Lam, J.; Wang, C. H.; Xu, S. Y.: H$\infty $model reduction for uncertain two-dimensional discrete systems. Optimal control applications and methods 26, No. 4, 199-227 (2005) |

[11] |
Jin, S. H.; Park, J. B.: Robust H$\infty $filter for polytopic uncertain systems via convex optimization. IET control theory applications 148, No. 1, 55-59 (2001) |

[12] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems magzine 19, No. 5, 59-70 (1999) |

[13] |
Mcclamroch, N. H.; Kolmanovsky, I.: Performance benefits of hybrid control design for linear and nonlinear systems. IEEE Proceedings 88, No. 7, 1083-1096 (2000) |

[14] |
Morse, A. S.: Supervisory control of families of linear set-point controllers part I: Exact matching. IEEE transactions on automatic control 41, No. 10, 1413-1431 (1996) · Zbl 0872.93009 |

[15] |
Morse, A. S.: Control using logic-based switching. (1997) · Zbl 0864.00080 |

[16] |
Wang, R.; Zhao, J.: Exponential stability analysis for discrete-time switched linear systems with time-delay. International journal of innovative computing, information and control 3, No. 6, 1557-1564 (2007) |

[17] |
Wang, Y.; Sun, Z.: H$\infty $control of networked control system via LMI approach. International journal of innovative computing, information and control 3, No. 2, 343-352 (2007) |

[18] |
Zhang, L.; Huang, B.; Lam, J.: H$\infty $model reduction of Markovian jump linear systems. Systems & control letters 50, No. 2, 103-118 (2003) · Zbl 1157.93519 |

[19] |
Zhang, L.; Lam, J.: On H2 model reduction of bilinear systems. Automatica 38, No. 2, 205-216 (2002) · Zbl 0991.93020 |

[20] |
Zhang, L.; Shi, P.; Boukas, E.; Wang, C.: H$\infty $control of switched linear discrete-time systems with polytopic uncertainties. Optimal control applications and methods 27, No. 5, 273-291 (2006) |

[21] |
Zhang, L.; Shi, P.; Wang, C.; Gao, H.: Robust H$\infty $filtering for switched linear discrete-time systems with polytopic uncertainties. International journal of adaptive control & signal processing 20, No. 6, 291-304 (2006) · Zbl 1127.93324 |