×

Robust fault detection with missing measurements. (English) Zbl 1152.93346

Summary: This paper investigates the problem of robust fault detection for uncertain systems with missing measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurement missing phenomenon, which appears typically in a network environment, is modelled by a stochastic variable satisfying the Bernoulli random binary distribution. The focus is on the design of a robust fault detection filter, or a residual generation system, which is stochastically stable and satisfies a prescribed disturbance attenuation level. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. Both full-order and reduced-order designs are considered, and formulated via linear matrix inequality (LMI) based convex optimization problems, which can be efficiently solved via standard numerical software. A continuous-stirred tank reactor (CSTR) system is utilized to illustrate the design procedures.

MSC:

93B30 System identification
93B35 Sensitivity (robustness)
93C55 Discrete-time control/observation systems
94C12 Fault detection; testing in circuits and networks
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/s11045-005-6233-6 · Zbl 1118.93016
[2] DOI: 10.1016/j.automatica.2005.03.019 · Zbl 1086.93014
[3] Chen J, Robust Model-Based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001
[4] Chowdhury FN, Inter. J. Innovative Comput. Inform. Contr. 2 pp 481– (2006)
[5] DOI: 10.1016/0005-1098(94)90169-4 · Zbl 0799.93018
[6] DOI: 10.1016/S0959-1524(97)00016-4
[7] DOI: 10.1109/TSP.2005.851116 · Zbl 1370.93274
[8] DOI: 10.1109/TAC.2003.817012 · Zbl 1364.93210
[9] DOI: 10.1109/TSP.2004.827188 · Zbl 1369.93175
[10] Gertler J, Fault Detection and Diagnosis in Engineering Systems (1998)
[11] DOI: 10.1109/TAC.2004.834132 · Zbl 1365.93172
[12] DOI: 10.1016/j.conengprac.2005.06.007
[13] DOI: 10.1016/S0967-0661(97)00046-4
[14] DOI: 10.1016/j.arcontrol.2004.12.002
[15] Ishii H, Limited Data Rate in Control Systems with Networks, vol. 275 of Lecture Notes in Control and Information Sciences (2002)
[16] DOI: 10.1016/j.automatica.2005.03.028 · Zbl 1086.93040
[17] DOI: 10.1080/00207720310001601037 · Zbl 1041.93051
[18] DOI: 10.1080/00207170310001647669 · Zbl 1061.93044
[19] Mao Z, Int. J. Innov. Comp. Inform. Contr. 3 pp 1121– (2007)
[20] DOI: 10.1109/TIT.1969.1054329 · Zbl 0174.51102
[21] DOI: 10.1080/00207170210160850 · Zbl 1146.93315
[22] DOI: 10.1109/78.934139 · Zbl 1369.93641
[23] Patton RJ, Issues of Fault Diagonisis for Dynamic Systems (2000)
[24] DOI: 10.1002/1099-1239(20001215)10:14<1155::AID-RNC521>3.0.CO;2-V · Zbl 0965.93059
[25] DOI: 10.2514/2.4881
[26] DOI: 10.1109/TAC.2003.814272 · Zbl 1364.93814
[27] DOI: 10.1109/TSMCA.2005.851124
[28] DOI: 10.1109/LSP.2005.847890
[29] DOI: 10.1109/TSP.2006.874370 · Zbl 1373.94729
[30] DOI: 10.1080/00207179608921866 · Zbl 0841.93014
[31] DOI: 10.1080/0020717021000031475 · Zbl 1017.93063
[32] Zhang P, Automatica 39 pp 1303– (2003)
[33] DOI: 10.1080/00207720500032622 · Zbl 1085.93518
[34] DOI: 10.1016/S0005-1098(02)00269-8 · Zbl 1036.93061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.