zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-fragile $H_\infty $ filter design for linear continuous-time systems. (English) Zbl 1152.93365
Summary: This paper studies the problem of non-fragile $H_\infty $ filter design for linear continuous-time systems. The filter to be designed is assumed to include additive gain variations, which result from filter implementations. A notion of structured vertex separator is proposed to approach the problem, and exploited to develop sufficient conditions for the non-fragile $H_\infty $ filter design in terms of solutions to a set of Linear Matrix Inequalities (LMIs). The designs guarantee the asymptotic stability of the estimation errors, and the $H_\infty $ performance of the system from the exogenous signals to the estimation errors below a prescribed level. A numerical example is given to illustrate the effect of the proposed method.

93C05Linear control systems
93D20Asymptotic stability of control systems
Full Text: DOI
[1] Dorato, P.: Non-fragile controller design, an overview. Proceedings of American control conference 5, 2829-2831 (1998)
[2] Famularo, D.; Dorato, P.; Abdallah, C. T.; Haddad, W. M.; Jadbabais, A.: Robust non-fragile LQ controllers: the static state feedback case. International journal of control 73, No. 2, 159-165 (2000) · Zbl 1006.93514
[3] Fu, M.; De Souza, C. E.; Xie, L.: H$\infty $estimation for uncertain systems. International journal of robust nonlinear control 2, 87-105 (1992) · Zbl 0765.93032
[4] Gao, H. J.; Lam, J.; Wang, C. H.: Induced L2 and generalized H2 filtering for systems with repeated scalar nonlinearities. IEEE transactions on signal processing 53, No. 11, 4215-4226 (2005)
[5] Geromel, J. C.; De Oliviera, M. C.: H2 and H$\infty $robust filtering for convex bounded uncertain systems. IEEE transactions on automatic control 46, No. 1, 100-107 (2001) · Zbl 1056.93628
[6] Haddad, W. M.; Corrado, J. R.: Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations. International journal of control 73, No. 15, 1405-1423 (2000) · Zbl 1062.93503
[7] Ho, M. -T.; Datta, A.; Bhatacharyya, S. P.: Robust and non-fragile PID controller design. International journal of robust and nonlinear control 11, No. 7, 681-708 (2001) · Zbl 0993.93009
[8] Iwasaki, T.; Shibata, G.: LPV system analysis via quadratic separator for uncertain implicit systems. IEEE transactions on automatic control 46, 1195-1208 (2001) · Zbl 1006.93053
[9] Jadbabaie, A.; Abdallah, C. T.; Famularo, D.; Dorato, P.: Robust, non-fragile and optimal controller design via linear matrix inequalities. Proceedings of American control conference 5, 2842-2846 (1998)
[10] Keel, L. H.; Bhatacharyya, S. P.: Robust, fragile, or optimal?. IEEE transactions on automatic control 42, No. 8, 1098-1105 (1997) · Zbl 0900.93075
[11] Li, H.; Fu, M.: A linear matrix inequality approach to robust H$\infty $filtering. IEEE transaction on signal processing 45, 2338-2350 (1997)
[12] Li, G.: On the structure of digital controller with finite word length consideration. IEEE transaction on automatic control 43, 689-693 (1998) · Zbl 0989.93535
[13] Mahmoud, M. S.: Resilient linear filtering of uncertain systems. Automatica 40, 1797-1802 (2004) · Zbl 1162.93403
[14] Mahmoud, M. S.: Resilient L2-L1 filtering of polytopic systems with state delays. IET control theory and applications 1, No. 1, 141-154 (2007)
[15] Nagpal, K. M.; Khargonekar, P. P.: Filtering and smoothing in an H$\infty $setting. IEEE transaction on automatic control 36, No. 2, 152-166 (1991) · Zbl 0758.93074
[16] De Oliveira, M. C.; Geromel, J. C.: H2 and H$\infty $filtering design subject to implementation uncertainty. SIAM journal on control and optimization 44, No. 2, 515-530 (2006)
[17] Palhares, R. M.; Peres, P. L. D.: Robust H$\infty $filtering design with pole placement constraint via lmis. Journal of optimization theory and applications 102, No. 2, 239-261 (1999) · Zbl 0941.93018
[18] Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems. System & control letters 8, No. 5, 351-357 (1987) · Zbl 0618.93056
[19] Peaucelle, D., Arzelier, D., & Farges, C. (2004). LMI results for resilient state-feedback with H\infty performance. In Proceedings of the 43th IEEE conference on decision and control (pp. 400-404)
[20] Scherer, C. W. (1997). A full block S-procedure with applications. In Proceedings of the 36th IEEE conference on decision and control (pp. 2602-2607)
[21] Takahashi, R. H. C., Dutra, D. A., Palhares, R. M., Peres, P. L. D. (2000). On robust non-fragile static state-feedback controller synthesis. In Proceedings of the 39th IEEE conference on decision and control, (pp. 4909-04914)
[22] Yang, G. -H.; Wang, J. L.; Lin, C.: Non-fragile H$\infty $control for linear systems with additive controller gain variations. International journal of control 73, No. 16, 1500-1506 (2000) · Zbl 1009.93020
[23] Yang, G. -H.; Wang, J. L.: Robust nonfragile Kalman filtering for uncertain linear systems with estimation gain uncertainty. IEEE transaction on automatic control 46, No. 2, 343-348 (2001) · Zbl 1056.93635
[24] Yang, G. -H.; Wang, J. L.: Non-fragile H$\infty $control for linear systems with multiplicative controller gain variations. Automatica 37, No. 5, 727-737 (2001) · Zbl 0990.93031
[25] Yang, G. -H.; Wang, J. L.: Non-fragile H$\infty $output feedback controller design for linear systems. Journal of dynamic systems measurement and control transactions of the ASME 125, No. 1, 117-123 (2003)
[26] Yaz, E. E.; Jeong, C. S.; Yaz, Y. I.: An LMI approach to discrete-time observer design with stochastic resilience. Journal of computational and applied mathematics 188, No. 2, 246-255 (2006) · Zbl 1108.93026
[27] Yaesh, I.; Shaked, U.: Game theory approach to optimal linear estimation in the minimum H$\infty $norm sense. IEEE transaction on automatic control 37, No. 6, 828-831 (1992) · Zbl 0769.90087
[28] Zhou, K.; Doyle, J. C.; Glover, K.: Robust and optimal control. (1996) · Zbl 0999.49500