×

A power function with a fixed finite gap everywhere. (English) Zbl 1153.03036

Let \(1 < n < \omega\). Assuming the existence of a cardinal \(\kappa\) that is \(\kappa^{+(n+1)}\)-strong, the author constructs a model of ZFC in which \(2^\lambda = \lambda^{+n}\) for every infinite cardinal \(\lambda\). He remarks that the forcing used (revised extender based Radin forcing) “should be viewed as a template enabling the construction of models with many different power functions”.

MSC:

03E35 Consistency and independence results
03E55 Large cardinals
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Dissertationes Mathematicae 68 pp 5– (1970)
[2] DOI: 10.2307/1970936 · Zbl 0327.02055
[3] DOI: 10.1017/S030500410006151X · Zbl 0539.03030
[4] DOI: 10.2307/2944324 · Zbl 0718.03040
[5] DOI: 10.1016/0003-4843(70)90012-4 · Zbl 0209.30601
[6] Logic conference Kiel 1974 499 pp 115– (1974)
[7] DOI: 10.1090/S0002-9947-1992-1041044-9
[8] Proceedings of the National Academy of Sciences. United States of America 50 pp 105– (1963)
[9] Journal für die Reine und Angewandte Mathematik 84 pp 242– (1878)
[10] Journal für die Reine und Angewandte Mathematik 77 pp 258– (1874)
[11] Surveys in Set Theory 87 pp 1– (1983) · Zbl 0511.00004
[12] Transactions of the American Mathematical Society (1998)
[13] Fundamenta Mathematicae 99 pp 61– (1978)
[14] DOI: 10.2307/1971065 · Zbl 0365.02057
[15] DOI: 10.1007/BF02759779 · Zbl 0364.02040
[16] Annals of Mathematics Studies 3 pp 491– (1940)
[17] DOI: 10.1016/S0168-0072(96)00007-3 · Zbl 0871.03041
[18] DOI: 10.1016/S0168-0072(97)00037-7 · Zbl 0896.03041
[19] Set Theory of the Continuum pp 243– (1992)
[20] DOI: 10.1007/BF02782938 · Zbl 0649.03040
[21] Proceedings of the International Congress on Mathematicians pp 115– (1974)
[22] Proper forcing 940 (1982)
[23] Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 9 pp 521– (1961)
[24] DOI: 10.1016/0003-4843(82)90023-7 · Zbl 0502.03028
[25] Logic Colloquium ’80 pp 209– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.