×

Slowly oscillating continuity. (English) Zbl 1153.26002

The author introduces the concept of slowly oscillating continuity and proves that slowly oscillating continuity implies ordinary continuity. A new type compactness is also defined and some new results related to compactness are obtained.

MSC:

26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] H. Fast, “Sur la convergence statistique,” Colloquium Mathematicum, vol. 2, pp. 241-244, 1951. · Zbl 0044.33605
[2] J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, no. 4, pp. 301-313, 1985. · Zbl 0588.40001
[3] A. Zygmund, Trigonometric Series. Vol. II, Cambridge University Press, New York, NY, USA, 2nd edition, 1959. · Zbl 0085.05601
[4] H. Robbins and R. C. Buck, “Advanced problems and solutions: solutions: 4216,” The American Mathematical Monthly, vol. 55, no. 1, p. 36, 1948.
[5] E. C. Posner, “Summability-preserving functions,” Proceedings of the American Mathematical Society, vol. 12, no. 1, pp. 73-76, 1961. · Zbl 0097.04602
[6] T. B. Iwiński, “Some remarks on Toeplitz methods and continuity,” Commentationes Mathematicae. Prace Matematyczne, vol. 16, pp. 37-43, 1972. · Zbl 0243.40005
[7] V. K. Srinivasan, “An equivalent condition for the continuity of a function,” The Texas Journal of Science, vol. 32, no. 2, pp. 176-177, 1980.
[8] J. Antoni, “On the A-continuity of real function. II,” Mathematica Slovaca, vol. 36, no. 3, pp. 283-288, 1986. · Zbl 0615.40002
[9] J. Antoni and T. , “On the A-continuity of real functions,” Universitas Comeniana Acta Mathematica Universitatis Comenianae, vol. 39, pp. 159-164, 1980. · Zbl 0519.40006
[10] E. Spigel and N. Krupnik, “On A-continuity of real functions,” Journal of Analysis, vol. 2, pp. 145-155, 1994. · Zbl 0809.26002
[11] E. Öztürk, “On almost-continuity and almost A-continuity of real functions,” Université d/Ankara. Faculté des Sciences. Communications. Série A1. Mathématiques, vol. 32, no. 4, pp. 25-30, 1983. · Zbl 0597.40001
[12] E. Sava\cs and G. Das, “On the A-continuity of real functions,” \DIstanbul Üniversitesi. Fen Fakültesi. Matematik Dergisi, vol. 53, pp. 61-66, 1994. · Zbl 0880.26006
[13] J. Borsík and T. , “On F-continuity of real functions,” Tatra Mountains Mathematical Publications, vol. 2, pp. 37-42, 1993. · Zbl 0788.26004
[14] J. Connor and K.-G. Grosse-Erdmann, “Sequential definitions of continuity for real functions,” The Rocky Mountain Journal of Mathematics, vol. 33, no. 1, pp. 93-121, 2003. · Zbl 1040.26001
[15] H. \cCakalli, “Sequential definitions of compactness,” Applied Mathematics Letters, vol. 21, no. 6, pp. 594-598, 2008. · Zbl 1145.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.