Inclusion properties for certain subclasses of analytic functions defined by a linear operator. (English) Zbl 1153.30009

Summary: The purpose of the present paper is to investigate some inclusion properties of certain subclasses of analytic functions associated with a family of linear operators, which are defined by means of the Hadamard product (or convolution). Some integral preserving properties are also considered.


30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI EuDML


[1] J. H. Choi, M. Saigo, and H. M. Srivastava, “Some inclusion properties of a certain family of integral operators,” Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 432-445, 2002. · Zbl 1035.30004
[2] W. Ma and D. Minda, “An internal geometric characterization of strongly starlike functions,” Annales Universitatis Mariae Curie-Skłodowska. Sectio A, vol. 45, pp. 89-97, 1991. · Zbl 0766.30008
[3] W. Janowski, “Some extremal problems for certain families of analytic functions. I,” Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 21, pp. 17-25, 1973. · Zbl 0252.30021
[4] R. M. Goel and B. S. Mehrok, “On the coefficients of a subclass of starlike functions,” Indian Journal of Pure and Applied Mathematics, vol. 12, no. 5, pp. 634-647, 1981. · Zbl 0456.30016
[5] St. Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical Society, vol. 49, pp. 109-115, 1975. · Zbl 0303.30006
[6] H. S. Al-Amiri, “On Ruscheweyh derivatives,” Annales Polonici Mathematici, vol. 38, no. 1, pp. 88-94, 1980. · Zbl 0452.30008
[7] B. C. Carlson and D. B. Shaffer, “Starlike and prestarlike hypergeometric functions,” SIAM Journal on Mathematical Analysis, vol. 15, no. 4, pp. 737-745, 1984. · Zbl 0567.30009
[8] H. M. Srivastava and S. Owa, “Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions,” Nagoya Mathematical Journal, vol. 106, pp. 1-28, 1987. · Zbl 0607.30014
[9] St. Ruscheweyh, Convolutions in Geometric Function Theory, vol. 83 of Séminaire de Mathématiques Supérieures, Presses de l’Université de Montréal, Montreal, Quebec, Canada, 1982. · Zbl 0499.30001
[10] St. Ruscheweyh and T. Sheil-Small, “Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture,” Commentarii Mathematici Helvetici, vol. 48, no. 1, pp. 119-135, 1973. · Zbl 0261.30015
[11] S. Owa and H. M. Srivastava, “Some applications of the generalized Libera integral operator,” Proceedings of the Japan Academy. Series A, vol. 62, no. 4, pp. 125-128, 1986. · Zbl 0583.30016
[12] R. W. Barnard and Ch. Kellogg, “Applications of convolution operators to problems in univalent function theory,” Michigan Mathematical Journal, vol. 27, no. 1, pp. 81-94, 1980. · Zbl 0413.30013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.