## Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales.(English)Zbl 1153.34040

Summary: By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation
$[r(t)[y(t) + p(t)y(\tau (t))]^\Delta ]^\Delta + q(t)f(y(\delta (t))) = 0,$
on a time scale $$\mathbb{T}$$. The results improve some oscillation results for neutral delay dynamic equations and in the special case when $$\mathbb{T}= \mathbb R$$ our results cover and improve the oscillation results for second-order neutral delay differential equations established by Li and Liu [Canad. J. Math. 48, No. 4, 871–886 (1996; Zbl 0859.34055)]. When $$\mathbb{T} = \mathbb N$$, our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh [Comp. Math. Appl., 36, No. 10–12, 123–132 (1998; Zbl 0933.39027)]. When $$\mathbb{T} =h\mathbb N, \mathbb{T} = \{t: t = q k , k \in \mathbb N, q > 1\}$$, $$\mathbb{T} = \mathbb N^{2} = \{t ^{2}: t \in \mathbb N\}$$, $$\mathbb{T} = \mathbb{T}_n = \{t_n = \Sigma _{k=1}^n \tfrac{1}{k}, n \in \mathbb N_{0}\}$$, $$\mathbb{T} =\{t ^{2}: t \in \mathbb N\}$$, $$\mathbb{T} = \{\surd n: n \in \mathbb N_{0}\}$$ and $$\mathbb{T} =\{\root 3\of {n}: n \in \mathbb N_{0}\}$$ our results are essentially new. Some examples illustrating our main results are given.

### MSC:

 34K11 Oscillation theory of functional-differential equations 34K40 Neutral functional-differential equations 39A10 Additive difference equations

### Citations:

Zbl 0859.34055; Zbl 0933.39027
Full Text:

### References:

 [1] Hilger, S.: Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math., 18, 18–56 (1990) · Zbl 0722.39001 [2] Agarwal, R. P., Bohner, M. O’Regan, D., Peterson, A.: Dynamic equations on time scales: A survey. J. Comp. Appl. Math., Special Issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, (Preprint in Ulmer Seminare 5), 141(1–2), 1–26 (2002) · Zbl 1020.39008 [3] Kac, V., Cheung, P.: Quantum Calculus, Springer, New York, 2001 · Zbl 0986.05001 [4] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001 · Zbl 0978.39001 [5] Spedding, V.: Taming Nature’s Numbers. New Scientist. 19, 28–31 (2003) [6] Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. and Appl., 300, 203–217 (2004) · Zbl 1062.34068 [7] Saker, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comp. Appl. Math., 187, 123–141 (2006) · Zbl 1097.39003 [8] Şahiner, Y.: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Adv. Difference Eqns., 2006, 1–9 (2006) [9] Wu, H., Wu, Zhuang, R. K., Mathsen, R. M.: Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comp., 178, 321–331 (2006) · Zbl 1104.39009 [10] Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Analysis, 86, 1–17 (2007) · Zbl 1151.01322 [11] Saker, S. H.: Hille and Nehari types oscillation criteria for second-order neutral delay dynamic equations. Dyn. Cont. Disc. Imp. Sys, (accepted) · Zbl 1179.34109 [12] Saker, S. H.: Oscillation of second-order delay and neutral delay dynamic equations on time scales. Dyn. Syst. & Appl., 16, 345–360 (2007) · Zbl 1147.34050 [13] Mathsen, R. M., Wang, Q. R., Wu, H. W.: Oscillation for neutral dynamic functional equations on time scales. J. Diff. Eqns. Appl., 10, 651–659 (2004) · Zbl 1060.34038 [14] Saker, S. H.: Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type. Dyn. Syst. & Appl., 15, 629–644 (2006) [15] Li, H. J.: Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl., 194, 312–321 (1995) · Zbl 0829.34060 [16] Li, H. J., Liu, W. L.: Oscillation criteria for second order neutral differential equations. Canad. J. Math., 48, 871–886 (1996) · Zbl 0859.34055 [17] Li, H. J., Yeh, C. C.: Oscillation criteria for second-order neutral delay difference equations. Comp. Math. Appl., 36, 123–132 (1998) · Zbl 0933.39027 [18] Bohner, E. Akin, Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Ineq. Pure Appl. Math., 6, 1–23 (2005) · Zbl 1086.34014 [19] Bohner, M., Stević, S.: Asymptotic behavior of second-order dynamic equations. Appl. Math. Comp., 188, 1503–1512 (2007) · Zbl 1124.39003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.