Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition. (English) Zbl 1153.35385

Summary: This paper is contributed to explore all possible single peakon solutions for the Degasperis-Procesi (DP) equation \(m_{t}+ m_{x} u +3 mu _{x}=0, m = u - u_{xx}\). Our procedure shows that the DP equation either has cusp soliton and smooth soliton solutions only under the inhomogeneous boundary condition \(\lim_{|x|\rightarrow \infty} u = A \not= 0\), or possesses the regular peakon solutions \(ce^{-|x -ct|}\in H^{1} (c\) is the wave speed) only when \(\lim_{|x|\rightarrow \infty} u =0\) (see Theorem 4.1). In particular, we obtain the stationary cuspon solution \(u = \sqrt {1- e^{-2|x|}} \in W^{1,1}_{\text{loc}}\) of the DP equation. Moreover we present new cusp solitons (in the space \(W^{1,1}_{\text{loc}}\)) and smooth soliton solutions in explicit form. Asymptotic analysis and numerical simulations are provided for smooth solitons and cusp solitons of the DP equation.


35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35D05 Existence of generalized solutions of PDE (MSC2000)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
76B25 Solitary waves for incompressible inviscid fluids
Full Text: DOI


[1] Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rational Mech. Anal. 183, 215–239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[2] Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · doi:10.1103/PhysRevLett.71.1661
[3] Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa-Holm equation. Inverse Problems 22, 2197–2207 (2006) · Zbl 1105.37044 · doi:10.1088/0266-5611/22/6/017
[4] Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–522 (2002) · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[5] Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[6] Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, World Scientific, pp. 23–37 (1999) · Zbl 0963.35167
[7] Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theoret. and Math. Phys. 133, 1463–1474 (2002) · doi:10.1023/A:1021186408422
[8] Holm, D.D., Staley, M.F.: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE. Phys. Lett. A 308, 437–444 (2003) · Zbl 1010.35066 · doi:10.1016/S0375-9601(03)00114-2
[9] Escher, J., Liu, Y., Yin, Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006) · Zbl 1126.35053 · doi:10.1016/j.jfa.2006.03.022
[10] Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005) · Zbl 1068.35163 · doi:10.1016/j.jmaa.2004.11.038
[11] Mikhailov, A.V., Novikov, V.S.: Perturbative symmetry approach. J. Phys. A, Math. Gen. 35, 4775–4790 (2002) · Zbl 1039.35008 · doi:10.1088/0305-4470/35/22/309
[12] Boutet de Monvel, A., Shepelsky, D.: Riemann–Hilbert approach for the Camassa-Holm equation on the line. C. R. Math. Acad. Sci. Paris 343, 627–632 (2006) · Zbl 1110.35056
[13] Qiao, Z.J.: Integrable hierarchy, 3{\(\times\)}3 constrained systems, and parametric and stationary solutions. Acta Appl. Math. 83, 199–220 (2004) · Zbl 1078.37045 · doi:10.1023/B:ACAP.0000038872.88367.dd
[14] Qiao, Z.J.: The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Comm. Math. Phys. 239, 309–341 (2003) · Zbl 1020.37046 · doi:10.1007/s00220-003-0880-y
[15] Qiao, Z.J.: Generalized r-matrix structure and algebro-geometric solutions for integrable systems. Rev. Math. Phys. 13, 545–586 (2001) · Zbl 1025.37034 · doi:10.1142/S0129055X01000752
[16] Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701–9 (2006) · Zbl 1112.37063 · doi:10.1063/1.2365758
[17] Qiao, Z.J., Li, S.: A new integrable hierarchy, parametric solution, and traveling wave solution. Math. Phys. Anal. Geom. 7, 289–308 (2004) · Zbl 1068.37052 · doi:10.1007/s11040-004-3090-8
[18] Qiao, Z.J., Zhang, G.: On peaked and smooth solitons for the Camassa–Holm equation. Europhys. Lett. 73, 657–663 (2006) · doi:10.1209/epl/i2005-10453-y
[19] Vakhnenko, V., Parkes, E.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004) · Zbl 1049.35162 · doi:10.1016/j.chaos.2003.09.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.