Kin, Eiko The forcing partial order on a family of braids forced by pseudo-Anosov 3-braids. (English) Zbl 1153.37023 Osaka J. Math. 45, No. 3, 757-772 (2008). Summary: Li-Yorke theorem tells us that a period 3 orbit for a continuous map of the interval into itself implies the existence of a periodic orbit of every period. This paper concerns an analogue of the theorem for homeomorphisms of the 2-dimensional disk. In this case a periodic orbit is specified by a braid type and on the set of all braid types Boyland’s dynamical partial order can be defined. We describe the partial order on a family of braids and show that a period 3 orbit of pseudo-Anosov braid type implies the Smale-horseshoe map which is a factor possessing complicated chaotic dynamics. Cited in 2 Documents MSC: 37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) 57M50 General geometric structures on low-dimensional manifolds PDFBibTeX XMLCite \textit{E. Kin}, Osaka J. Math. 45, No. 3, 757--772 (2008; Zbl 1153.37023) Full Text: arXiv Euclid References: [1] L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One, second edition, World Sci. Publishing, River Edge, NJ, 2000. · Zbl 0963.37001 [2] D. Asimov and J. Franks: Unremovable closed orbits ; in Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. 1007 , Springer, Berlin, 1983, 22–29. · Zbl 0521.58047 · doi:10.1007/BFb0061407 [3] M. Bestvina and M. Handel: Train-tracks for surface homeomorphisms , Topology 34 (1995), 109–140. · Zbl 0837.57010 · doi:10.1016/0040-9383(94)E0009-9 [4] J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82 , Princeton Univ. Press, Princeton, NJ, 1974. [5] P. Boyland: Rotation sets and monotone periodic orbits for annulus homeomorphisms , Comment. Math. Helv. 67 (1992), 203–213. · Zbl 0763.58012 · doi:10.1007/BF02566496 [6] P.L. Boyland, H. Aref and M.A. Stremler: Topological fluid mechanics of stirring , J. Fluid Mech. 403 (2000), 277–304. · Zbl 0982.76085 · doi:10.1017/S0022112099007107 [7] A. de Carvalho and T. Hall: Braid forcing and star-shaped train tracks , Topology 43 (2004), 247–287. · Zbl 1134.37341 · doi:10.1016/S0040-9383(03)00042-9 [8] A. Fathi, F. Laudenbach, and V. Poenaru: Travaux de Thurston sur les Surfaces, Astérisque 66 – 67 , Société Mathématique de France, Paris, 1979. [9] T. Hall: Unremovable periodic orbits of homeomorphisms , Math. Proc. Cambridge Philos. Soc. 110 (1991), 523–531. · Zbl 0751.58031 · doi:10.1017/S0305004100070596 [10] T. Hall: The creation of horseshoes , Nonlinearity 7 (1994), 861–924. · Zbl 0806.58015 · doi:10.1088/0951-7715/7/3/008 [11] M. Handel: The forcing partial order on the three times punctured disk , Ergodic Theory Dynam. Systems 17 (1997), 593–610. · Zbl 0888.58016 · doi:10.1017/S0143385797084940 [12] E. Hironaka and E. Kin: A family of pseudo-Anosov braids with small dilatation , Algebr. Geom. Topol. 6 (2006), 699–738. · Zbl 1126.37014 · doi:10.2140/agt.2006.6.699 [13] E. Kin and T. Sakajo: Efficient topological chaos embedded in the blinking vortex system , Chaos 15 (2005). · Zbl 1080.76054 · doi:10.1063/1.1923207 [14] B. Kolev: Periodic orbits of period \(3\) in the disc , Nonlinearity 7 (1994), 1067–1071. · Zbl 0805.54038 · doi:10.1088/0951-7715/7/3/016 [15] T.Y. Li and J.A. Yorke: Period three implies chaos , Amer. Math. Monthly 82 (1975), 985–992. JSTOR: · Zbl 0351.92021 · doi:10.2307/2318254 [16] J. Los: On the forcing relation for surface homeomorphisms , Inst. Hautes Études Sci. Publ. Math. 85 (1997), 5–61. · Zbl 0902.58028 · doi:10.1007/BF02699534 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.