zbMATH — the first resource for mathematics

Boolean delay equations: A simple way of looking at complex systems. (English) Zbl 1153.37315
Summary: Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time; such BDEs can be seen therefore as metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil’s staircases and “fractal sunbursts.” All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades of loading and failure in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid-earth problems. The former have used small systems of BDEs, while the latter have used large hierarchical networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (“partial BDEs”) and discuss connections with other types of discrete dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.

37B15 Dynamical aspects of cellular automata
86A10 Meteorology and atmospheric physics
86A15 Seismology (including tsunami modeling), earthquakes
68Q80 Cellular automata (computational aspects)
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI
[1] Dee, D.; Ghil, M., Boolean difference equations, I: formulation and dynamic behavior, SIAM J. appl. math., 44, 111-126, (1984) · Zbl 0539.39001
[2] A.P. Mullhaupt, Boolean delay equations: A class of semi-discrete dynamical systems, Ph.D. Thesis, New York University [published also as Courant Institute of Mathematical Sciences Report CI-7-84, 1984, p. 193]
[3] Ghil, M.; Mullhaupt, A.P., Boolean delay equations. II: periodic and aperiodic solutions, J. stat. phys., 41, 125-173, (1985) · Zbl 0624.39002
[4] Ghil, M.; Mullhaupt, A.P.; Pestiaux, P., Deep water formation and quaternary glaciations, Clim. dyn., 2, 1-10, (1987)
[5] Ghil, M.; Robertson, A.W., Solving problems with GCMs: general circulation models and their role in the climate modeling hierarchy, (), 285-325
[6] Saunders, A.; Ghil, M., A Boolean delay equation model of ENSO variability, Physica D, 160, 54-78, (2001) · Zbl 0983.86001
[7] Zaliapin, I.; Keilis-Borok, V.; Ghil, M., A Boolean delay equation model of colliding cascades. part I: multiple seismic regimes, J. stat. phys., 111, 815-837, (2003) · Zbl 1018.37011
[8] Zaliapin, I.; Keilis-Borok, V.; Ghil, M., A Boolean delay equation model of colliding cascades. part II: prediction of critical transitions, J. stat. phys., 111, 839-861, (2003) · Zbl 1018.37012
[9] (), 705
[10] Gutowitz, H., Cellular automata: theory and experiment, (1991), MIT Press Cambridge, MA, p. 485
[11] Wolfram, S., Cellular automata and complexity: collected papers, (1994), Addison-Wesley Reading, Mass, p. 610 · Zbl 0823.68003
[12] Kauffman, S.A., At home in the universe: the search for laws of self-organization and complexity, (1995), Oxford University Press New York, p. 338
[13] Gagneur, J.; Casari, G., From molecular networks to qualitative cell behavior, FEBS letters, 579, 8, 1867-1871, (2005), (special issue)
[14] Arnol’d, V.I., Geometrical methods in the theory of ordinary differential equations, (1983), Springer-Verlag New York, p. 376 · Zbl 0569.58018
[15] Smale, S., Differentiable dynamical systems, Bull. amer. math. soc., 73, 747-817, (1967) · Zbl 0202.55202
[16] Collet, P.; Eckmann, J.-P., Iterated maps on the interval as dynamical systems, (1980), Birkhäuser Verlag Basel, Boston, Birkhäuser, p. 264 · Zbl 0441.58011
[17] Hénon, M., La topologie des lignes de Courant dans un cas particulier, C. R. acad. sci. Paris, 262, 312-414, (1966)
[18] von Neumann, J., Theory of self-reproducing automata, (1966), University of Illinois Press Urbana, Illinois, p. 388
[19] Kauffman, S.A., The origins of order: self-organization and selection in evolution, (1993), Oxford University Press USA, p. 734
[20] (), 507
[21] Arnold, B.H., Logic and Boolean algebra, (1962), Prentice-Hall Englewood Cliffs, New Jersey, p. 144 · Zbl 0121.02701
[22] Bhattacharrya, K.; Ghil, M., Internal variability of an energy-balance model with delayed albedo effects, J. atmospheric sci., 39, 1747-1773, (1982)
[23] Driver, R.D., ()
[24] Hale, J., Functional differential equations, (1971), Springer-Verlag New York, p. 238 · Zbl 0222.34003
[25] McDonald, N., Time lags in biological models, (1978), Springer-Verlag New York, p. 112
[26] Bellman, R.; Cooke, K.L., Differential-difference equations, (1963), Academic Press New York · Zbl 0118.08201
[27] Isaacson, E.; Keller, H.B., Analysis of numerical methods, (1966), John Wiley New York · Zbl 0168.13101
[28] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, (1997), Springer-Verlag New York, p. 475
[29] Lichtenberg, A.J.; Liebermann, M.A., Regular and chaotic dynamics, (1992), Springer-Verlag New York, p. 714 · Zbl 0748.70001
[30] Lorenz, E.N., Deterministic nonperiodic flow, J. atmospheric sci., 20, 130-141, (1963) · Zbl 1417.37129
[31] Arnol’d, V.I., Mathematical methods of classical mechanics, (1978), Springer-Verlag New York, p. 462 · Zbl 0407.57025
[32] Varadi, F.; Runnegar, B.; Ghil, M., Successive refinements in long-term integrations of planetary orbits, Astrophys. J., 592, 620-630, (2003)
[33] Ghil, M.; Childress, S., Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory and climate dynamics, (1987), Springer-Verlag New York, Berlin, London, Paris, Tokyo, p. 485 · Zbl 0643.76001
[34] Dijkstra, H.A.; Ghil, M., Low-frequency variability of the large-scale Ocean circulation: A dynamical system approach, Rev. geophys., 43, RG3002, (2005)
[35] Khinchin, A.Ya., Continued fractions, (1964), Univ. of Chicago Press Chicago, IL · Zbl 0117.28601
[36] Andronov, A.; Pontryagin, L., Systèmes grossiers, Dokl. akad. nauk. USSR, 14, 247-251, (1937) · Zbl 0016.11301
[37] Jacob, F.; Monod, J., Genetic regulatory mechanisms in the synthesis of proteins, J. mol. biol., 3, 318-356, (1961)
[38] Thomas, R., Boolean formalization of genetic control circuits, J. theoret. biol., 42, 563-585, (1973)
[39] Thomas, R., Logical analysis of systems comprising feedback loops, J. theoret. biol., 73, 631-656, (1978)
[40] Wolfram, S., Statistical-mechanics of cellular automata, Rev. modern phys., 55, 601-644, (1983), also included in [11] · Zbl 1174.82319
[41] Wolfram, S., Universality and complexity in cellular automata, Physica D, 10, 1-7, (1984), also included in [11]
[42] Kauffman, S.A., Metabolic stability and epigenesis in randomly constructed genetic nets, J. theoret. biol., 22, 437-467, (1969)
[43] Weisbuch, G., (), 208
[44] Derrida, B.; Pomeau, Y., Random networks of automata: A simple annealed approximation, Europhys. lett., 1, 45-49, (1986)
[45] Derrida, B.; Weisbuch, G., Evolution of overlaps between configurations in random Boolean networks, J. physique, 47, 1297-1303, (1986)
[46] Varadi, F.; Ghil, M.; Kaula, W.M., Jupiter, saturn and the edge of chaos, Icarus, 139, 286-294, (1999)
[47] Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R., Core percolation and onset of complexity in Boolean networks, Phys. rev. lett., 96, 018101-1-018101-4, (2006) · Zbl 07079995
[48] Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R., Computational core and fixed-point organisation in Boolean networks, J. stat. mech., P03002, (2006) · Zbl 07079995
[49] Mézard, M.; Parisi, G.; Zecchina, R., Analytic and algorithmic solution of satisfiability problems, Science, 297, 812-815, (2002)
[50] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. mod. phys., 74, 47-97, (2002) · Zbl 1205.82086
[51] Kauffman, S.; Peterson, C.; Samuelsson, B.; Troein, C., Genetic networks with canalyzing Boolean rules are always stable, Proc. natl. acad. sci. USA, 101, 17102-17107, (2004)
[52] Mesot, B.; Teuscher, C., Deducing local rules for solving global tasks with random Boolean networks, Physica D, 211, 88-106, (2005) · Zbl 1086.94042
[53] Samuelsson, B.; Troein, C., Optimization of robustness and connectivity in complex networks, Phys. rev. lett., 90, 068701-1-068701-4, (2003)
[54] Drossel, B.; Mihaljev, T.; Greil, F., Scaling in critical random Boolean networks, Phys. rev. lett., 94, 088701-1-088701-4, (2005)
[55] Mihaljev, T.; Drossel, B., Scaling in a general class of critical random Boolean networks, Phys. rev. E, 74, 046101-1-046101-10, (2006)
[56] W. Just, G.A. Enciso, Analogoues of the Smale and Hirsch theorems for cooperative Boolean and other discrete systems, 2007, preprint, math.DS:0711.0138 · Zbl 1259.37013
[57] G.A. Enciso, W. Just, Large attractors in cooperative bi-quadratic Boolean networks. Part I, 2007, preprint, q-bio.MN:0711.2799
[58] W. Just, G.A. Enciso, Large attractors in cooperative bi-quadratic Boolean networks. Part II, 2008, preprint, q-bio.MN:0801.4556
[59] Greil, F.; Drossel, B., Kauffman networks with threshold functions, Eur. phys. J. B, 57, 109-113, (2007)
[60] C. Gershenson, Introduction to random Boolean networks, nlin.AO/0408006, in: Bedau, M., P. Husbands, T. Hutton, S. Kumar and H. Suzuchi (Eds.), Workshop and Tutorial Proceeding, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), 2004, pp. 160-173
[61] Gershenson, C., Classification of random Boolean networks, (), 1-8
[62] Klemm, K.; Bornholdt, S., Stable and unstable attractors in Boolean networks, Phys. rev. E, 72, 055101-1-055101-4, (2005)
[63] Öktem, H.; Pearson, R.; Egiazarian, K., An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations), Chaos, 13, 1167-1174, (2003) · Zbl 1080.92512
[64] Gabrielov, A.; Keilis-Borok, V.; Zaliapin, I.; Newman, W.I., Critical transitions in colliding cascades, Phys. rev. E, 62, 237-249, (2000)
[65] Gabrielov, A.M.; Zaliapin, I.V.; Keilis-Borok, V.I.; Newman, W.I., Colliding cascades model for earthquake prediction, J. geophys. intl., 143, 427-437, (2000)
[66] Darby, M.S.; Mysak, L.A., A Boolean delay equation model of an interdecadal arctic climate cycle, Clim. dyn., 8, 241-246, (1993)
[67] Wohlleben, T.M.H.; Weaver, A.J., Interdecadal climate variability in the subpolar north atlantic, Clim. dyn., 11, 459-467, (1995)
[68] (), 490
[69] Philander, S.G.H., El niño, la niña, and the southern oscillation, (1990), Academic Press San Diego, p. 312 · Zbl 0213.53401
[70] (), 545
[71] Maraun, D.; Kurths, J., Epochs of phase coherence between el niño/southern oscillation and Indian monsoon, Geophys. res. lett., 25, 171-174, (2005)
[72] Latif, M.; Barnett, T.P.; Flügel, M.; Graham, N.E.; Xu, J.-S.; Zebiak, S.E., A review of ENSO prediction studies, Clim. dyn., 9, 167-179, (1994)
[73] Ghil, M.; Jiang, N., Recent forecast skill for the el niño/southern oscillation, Geophys. res. lett., 25, 171-174, (1998)
[74] Bjerknes, J., Atmospheric teleconnections from the equatorial Pacific, Mon. wea. rev., 97, 163-172, (1969)
[75] Chang, P.; Wang, B.; Li, T.; Ji, L., Interactions between the seasonal cycle and the southern oscillation: frequency entrainment and chaos in intermediate coupled Ocean-atmosphere model, Geophys. res. lett., 21, 2817-2820, (1994)
[76] Chang, P.; Ji, L.; Wang, B.; Li, T., Interactions between the seasonal cycle and el niño - southern oscillation in an intermediate coupled Ocean-atmosphere model, J. atmospheric sci., 52, 2353-2372, (1995)
[77] Jin, F.-f.; Neelin, J.D.; Ghil, M., El niño on the devil’s staircase: annual subharmonic steps to chaos, Science, 264, 70-72, (1994)
[78] Jin, F.-f.; Neelin, J.D.; Ghil, M., El niño/southern oscillation and the annual cycle: subharmonic frequency locking and aperiodicity, Physica D, 98, 442-465, (1996) · Zbl 0900.86016
[79] Tziperman, E.; Stone, L.; Cane, M.A.; Jarosh, H., El niño chaos: overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator, Science, 264, 72-74, (1994)
[80] Tziperman, E.; Cane, M.A.; Zebiak, S.E., Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos, J. atmospheric sci., 50, 293-306, (1995)
[81] Battisti, D.S., The dynamics and thermodynamics of a warming event in a coupled tropical atmosphere/Ocean model, J. atmospheric sci., 45, 2889-2919, (1988)
[82] Dijkstra, H.A., Nonlinear physical oceanography: A dynamical systems approach to the large scale Ocean circulation and el niño, (2005), Springer New York, p. 532
[83] Neelin, J.D.; Latif, M.; Jin, F.-f., Dynamics of coupled Ocean-atmosphere models: the tropical problem, Annu. rev. fluid mech., 26, 617-659, (1994) · Zbl 0800.76088
[84] Jin, F.-f., Tropical Ocean-atmosphere interaction, the Pacific cold tongue, and the el-niño-southern oscillation, Science, 274, 76-78, (1996)
[85] Jin, F.-f.; Neelin, J.D., Modes of interannual tropical Ocean-atmosphere interaction-A unified view. I. numerical results, J. atmospheric sci., 50, 3477-3503, (1993)
[86] Jin, F.-f.; Neelin, J.D., Modes of interannual tropical Ocean-atmosphere interaction-A unified view. II. analytical results in fully coupled cases, J. atmospheric sci., 50, 3504-3522, (1993)
[87] Jin, F.-f.; Neelin, J.D., Modes of interannual tropical Ocean-atmosphere interaction-A unified view. III. analytical results in fully coupled cases, J. atmospheric sci., 50, 3523-3540, (1993)
[88] Jensen, M.H.; Bak, P.; Bohr, T., Transition to chaos by interaction of resonances in dissipative systems. part I. circle maps, Phys. rev. A, 30, 1960-1969, (1984)
[89] Schuster, H.G., Deterministic chaos: an introduction, (1988), Physik-Verlag Weinheim · Zbl 0707.58003
[90] Mandelbrot, B., The fractal geometry of nature, (1982), W. H. Freeman New York, p. 480 · Zbl 0504.28001
[91] Peitgen, H.-O.; Richter, P., The beauty of fractals, (1986), Springer-Verlag Heidelberg, p. 211 · Zbl 0601.58003
[92] Peitgen, H.; Jürgens, H.; Saupe, D., Chaos and fractals: new frontiers of science, (1992), Springer-Verlag New York · Zbl 0779.58004
[93] Rasmusson, E.M.; Wang, X.; Ropelewski, C.F., The biennial component of ENSO variability, J. mar. syst., 1, 71-96, (1990)
[94] Jiang, N.; Neelin, J.D.; Ghil, M., Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific, Clim. dyn., 12, 101-112, (1995)
[95] Moron, V.; Vautard, R.; Ghil, M., Trends, interdecadal and interannual oscillations in global sea-surface temperatures, Clim. dyn., 14, 545-569, (1998)
[96] Yiou, P.; Sornette, D.; Ghil, M., Data-adaptive wavelets and multi-scale SSA, Physica D, 142, 254-290, (2000) · Zbl 0971.62050
[97] Burridge, R.; Knopoff, L., Model and theoretical seismicity, Bull. seism. soc. am., 57, 341-371, (1967)
[98] Allègre, C.J.; Le Mouel, J.L.; Provost, A., Scaling rules in rock fracture and possible implications for earthquake prediction, Nature, 297, 47-49, (1982)
[99] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality, Phys. rev. A, 38, 364-374, (1988) · Zbl 1230.37103
[100] Keilis-Borok, V.I., Earthquake prediction: state-of-the-art and emerging possibilities, Annu. rev. Earth planet. sci., 30, 1-33, (2002)
[101] Keilis-Borok, V.I.; Shebalin, P.N., Dynamics of lithosphere and earthquake prediction, Phys. Earth planet. int., 111, 179-330, (1999)
[102] (), 107
[103] (), 284
[104] Turcotte, D.L.; Newman, W.I.; Gabrielov, A.M., A statistical physics approach to earthquakes, (), 83-96
[105] Keilis-Borok, V.I., Intermediate-term earthquake prediction, Proc. natl. acad. sci. USA, 93, 3748-3755, (1996)
[106] Scholz, C.H., The mechanics of earthquakes and faulting, (2002), Cambridge University Press Cambridge, p. 496
[107] Turcotte, D.L., Fractals and chaos in geology and geophysics, (1997), Cambridge University Press Cambridge, p. 412 · Zbl 0785.58005
[108] Press, A.; Allen, C., Pattern of seismic release in the southern California region, J. geophys. res., 100, 6421-6430, (1995)
[109] Romanowicz, B., Spatiotemporal patterns in the energy-release of great earthquakes, Science, 260, 1923-1926, (1993)
[110] Mertins, A., Signal analysis: wavelets, filter banks, time-frequency transforms and applications, (1999), John Wiley and Sons Chichester, p. 330 · Zbl 0934.94001
[111] Keilis-Borok, V.I.; Malinovskaya, L.N., One regularity in the occurrence of strong earthquakes, J. geophys. res., 69, 3019-3024, (1964)
[112] Jaume, S.C.; Sykes, L.R., Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure appl. geophys., 155, 279-306, (1999)
[113] Keilis-Borok, V.I., Symptoms of instability in a system of earthquake-prone faults, Physica D, 77, 193-199, (1994)
[114] Pepke, G.F.; Carlson, J.R.; Shaw, B.E., Prediction of large events on a dynamical model of fault, J. geophys. res., 99, 6769-6788, (1994)
[115] Molchan, G.M.; Dmitrieva, O.E.; Rotwain, I.M.; Dewey, J., Statistical analysis of the results of earthquake prediction, based on burst of aftershocks, Phys. Earth planet. int., 61, 128-139, (1990)
[116] Knopoff, L.; Levshina, T.; Keilis-Borok, V.I.; Mattoni, C., Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California, J. geophys. res., 101, 5779-5796, (1996)
[117] Bufe, C.G.; Varnes, D.J., Predictive modeling of the seismic cycle of the greater San Francisco bay region, J. geophys. res., 98, 9871-9883, (1993)
[118] Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Somette, A.; Sornette, D., An observational test of the critical earthquake concept, J. geophys. res., 103, 24359-24372, (1998)
[119] Courant, R.; Hilbert, D., Methods of mathematical physics, vol. II, (1962), Wiley-Interscience New York, London, Sydney, p. 830 · Zbl 0729.00007
[120] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967), Wiley New York, p. 420 · Zbl 0155.47502
[121] Van Leer, B., Towards the ultimate conservation difference scheme. V. A second order sequel to godunov’s method, J. comput. phys., 32, 101-135, (1979) · Zbl 1364.65223
[122] Martin, O.; Odlyzko, A.M.; Wolfram, S., Algebraic properties of cellular automata, Comm. math. phys., 93, 219-258, (1984), also included in [11] · Zbl 0564.68038
[123] Wright, D.G.; Stocker, T.F.; Mysak, L.A., A note on quaternary climate modelling using Boolean delay equations, Clim. dyn., 4, 263-267, (1990)
[124] Nicolis, C., Boolean approach to climate dynamics, Q. J. R. meteorol. soc., 108, 707-715, (1982)
[125] Mysak, L.A.; Manak, D.K.; Marsden, R.F., Sea-ice anomalies observed in the greenland and labrador seas during 1901-1984 and their relation to an interdecadal arctic climate cycle, Clim. dyn., 5, 111-113, (1990)
[126] Kellogg, W.W., Feedback mechanisms in the climate system affecting future levels of carbon dioxide, J. geophys. res., 88, 1263-1269, (1983)
[127] Neumann, A.; Weisbuch, G., Window automata analysis of population dynamics in the immune system, Bull. math. biol., 54, 21-44, (1992) · Zbl 0734.92014
[128] Neumann, A.; Weisbuch, G., Dynamics and topology of idiotypic networks, Bull. math. biol., 54, 699-726, (1992) · Zbl 0751.92001
[129] Ghil, M.; Checkroun, M.D.; Simonnet, E., Climate dynamics and fluid mechanics: natural variability and related uncertainties, Physica D, 237, 2111-2126, (2008) · Zbl 1143.76440
[130] Arnold, L., Random dynamical systems, (1998), Springer-Verlag, p. 616
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.