zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of identical and non-identical 4-D chaotic systems using active control. (English) Zbl 1153.37359
Summary: This paper presents chaos synchronization between two identical Lorenz-Stenflo (LS) and a new four-dimensional chaotic system (Qi systems) by using active control technique. The designed controller ensures that the state variables of the controlled chaotic slave LS and Qi systems globally synchronizes with the state variables of the master systems respectively. It is also shown that Qi system globally synchronizes with LS system under the generalized active control. The results are validated using numerical simulations.

37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93D05Lyapunov and other classical stabilities of control systems
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization of chaotic systems, Phys rev 64, 821-824 (1990) · Zbl 0938.37019
[2] Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J.: Synchronization a universal concept in nonlinear sciences, (2001) · Zbl 0993.37002
[3] Issue, Special: Phase synchronization and its applications, Int J bifurc chaos 10 -- 11 (2000)
[4] Kapitaniak, T.: Controlling chaos: theoretical and practical methods in nonlinear dynamics, (1996) · Zbl 0883.58021
[5] Lakshmanan, M.; Murali, K.: Chaos in nonlinear oscillators: controlling and synchronization, (1996) · Zbl 0868.58058
[6] Kurths J, Boccaletti S, Grebogi C, Lai Y-C. Focus issue: control and synchronization in chaotic systems. Chaos;13:126 -- 7.
[7] Zhang M, Wang X, Gong X, Wei GW, Lai C-H. Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys Rev E;68:036208.
[8] Pikovsky, A.; Rosenblum, M.; Kurths, J.: Synchronization in a population of globally coupled chaotic oscillators, Europhys lett 34, 165-170 (1996)
[9] Pikovsky, A.; Rosenblum, M. G.; Osipov, G. V.; Kurths, J.: Phase synchronization of chaotic oscillators by external driving, Physica D 104, 219-238 (1997) · Zbl 0898.70015 · doi:10.1016/S0167-2789(96)00301-6
[10] Rosenblum, M.; Pikovsky, A.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys rev lett 76, 1804-1807 (1996)
[11] Osipov, G.: Phase synchronization effects in a lattice of non-identical Rössler attractors, Phys rev E 55, 2353-2361 (1997)
[12] Rulkov, N. F.; Sushchik, M. M.; Tsimiring, L. S.; Abarbanel, H. D. I.: Generalized synchronization in directionally coupled dynamical systems, Phys rev E 51, 980-994 (1995)
[13] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalent of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[14] Rosemblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys rev lett 78, 4193-4196 (1997)
[15] Vincent UE, Njah AN, Akinlade O, Solarin ART. Phase Synchronization in unidirectionally coupled chaotic ratchets. Chaos;14:1018 -- 25. · Zbl 1080.37039 · doi:10.1063/1.1803673
[16] Kim, C. -M.; Rim, S.; Kye, W. -H.: Sequential synchronization of chaotic system with application to communication, Phys rev lett 88, 014103 (2002)
[17] Bai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz systems using active control, Chaos, solitons & fractals 11, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[18] Vincent, U. E.; Njah, A. N.; Akinlade, O.; Solarin, A. R. T.: Phase synchronization in bi-directionally coupled chaotic ratchets, Physica A 360, 186-196 (2006) · Zbl 1080.37039
[19] Sarasola, S.; Torredea, F. J.; D’anjou, A.: Feed-back synchronization of chaotic systems, Int J bifurc chaos 13, 177-191 (2003) · Zbl 1056.37038 · doi:10.1142/S0218127403006443
[20] Liao, X.: Chaos synchronization of general Lur’e systems via time-delay feed-back control, Int J bifurc chaos 13, 207-213 (2003) · Zbl 1129.93509 · doi:10.1142/S0218127403006455
[21] Liao, T. L.: Adaptive synchronization of two Lorenz systems, Chaos, solitons & fractals 9, 1555-1561 (1998) · Zbl 1047.37502
[22] Liao, T. L.; Tsai, S. H.: Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, solitons & fractals 11, 1387-1396 (2000) · Zbl 0967.93059 · doi:10.1016/S0960-0779(99)00051-X
[23] Fotsin, H. B.; Woafo, P.: Adaptive synchronization of a modified and uncertain chaotic van der Pol -- Duffing oscillator based on parameter identification, Chaos, solitons & fractals 24, 1363-1371 (2005) · Zbl 1091.70010 · doi:10.1016/j.chaos.2004.09.101
[24] Tan, X. H.; Zhang, T. Y.; Yang, Y. R.: Synchronizing chaotic systems using backstepping design, Chaos, solitons & fractals 16, 37-45 (2003) · Zbl 1035.34025 · doi:10.1016/S0960-0779(02)00153-4
[25] Yu, Y.; Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic systems, Chaos, solitons & fractals 21, 643-649 (2004) · Zbl 1062.34053
[26] Zhang, J.; Li, C.; Zhang, H.; Yu, Y.: Chaos synchronization using single variable feed-back based on backsepping method, Chaos, solitons & fractals 21, 1183-1193 (2004) · Zbl 1129.93518 · doi:10.1016/j.chaos.2003.12.079
[27] Zhang, H.; Ma, X. -K.; Liu, W. -Z.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, solitons & fractals 21, 1249-1257 (2004) · Zbl 1061.93514
[28] Bai, E. W.; Lonngren, K. E.: Synchronization of two Lorenz systems using active control, Chaos, solitons & fractals 8, 51-58 (1997) · Zbl 1079.37515
[29] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen dynamical systems using active control, Phys lett A 278, 191-197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[30] Ho, M. -C.; Hung, Y. -C.; Chou, C. -H.: Phase and anti-phase synchronization of two chaotic systems by using active control, Phys lett A 296, 43-48 (2002) · Zbl 1098.37529 · doi:10.1016/S0375-9601(02)00074-9
[31] Codreanu, S.: Synchronization of spatiotemporal nonlinear dynamical systems by an active control, Chaos, solitons & fractals 15, 507-510 (2003) · Zbl 1098.93509 · doi:10.1016/S0960-0779(02)00128-5
[32] Ho, M. -C.; Hung, Y. -C.: Synchronization of two different systems by using generalized active control, Phys lett A 301, 424-428 (2002) · Zbl 0997.93081 · doi:10.1016/S0375-9601(02)00987-8
[33] Yassen, M. T.: Chaotic synchronization between two different chaotic systems using active control, Chaos solitons & fractals 23, 131-140 (2005) · Zbl 1091.93520
[34] Chen, H. -K.: Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Liu, Chaos, solitons & fractals 25, 1049-1056 (2005) · Zbl 1198.34069 · doi:10.1016/j.chaos.2004.11.032
[35] Vincent, U. E.: Synchronization of Rikitake chaotic attractor using active control, Phys lett A 343, 133-138 (2005) · Zbl 1194.34091 · doi:10.1016/j.physleta.2005.06.003
[36] Yan, J.; Li, C.: Generalized projective synchronization of a unified chaotic system, Chaos, solitons & fractals 26, 1119-1124 (2005) · Zbl 1073.65147 · doi:10.1016/j.chaos.2005.02.034
[37] Stenflo, L.: Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica scr 53, 83-84 (1996)
[38] Zhaou, C.; Lai, C. H.; Yu, M. Y.: Bifurcation behaviour of the generalized Lorenz equations at large rotation numbers, J math phys 38, 5225-5239 (1997) · Zbl 0897.76038 · doi:10.1063/1.531938
[39] Liu, Z.: The first integral of nonlinear acoustic gravity wave equation, Physica scr 61, 526 (2000)
[40] Banerjee, S.; Saha, P.; Chowdhury, A. R.: Chaotic scenerio in the stenflo equations, Physica scr 63, 177-180 (2001) · Zbl 1115.37366 · doi:10.1238/Physica.Regular.063a00177
[41] Banerjee, S.; Saha, P.; Chowdhury, A. R.: On the application of adaptive control and phase synchronization in nonlinear fluid dynamics, Int J nonlinear mech 39, 25-31 (2004) · Zbl 1225.76137 · doi:10.1016/S0020-7462(02)00125-7
[42] Qi, G.; Chen, Z.; Du, S.; Yuan, Z.: On a four-dimensional chaotic system, Chaos, solitons & fractals 23, 1671-1682 (2005) · Zbl 1071.37025