Chousionis, Vasilis Singular integrals on Sierpinski gaskets. (English) Zbl 1153.42005 Publ. Mat., Barc. 53, No. 1, 245-256 (2009). Summary: We construct a class of singular integral operators associated with homogeneous Calderón-Zygmund standard kernels on \(d\)-dimensional, \(d < 1\), Sierpinski gaskets \(E_d\). These operators are bounded in \(L^2 (\mu _d )\) and their principal values diverge \(\mu _d\) almost everywhere, where \(\mu_d\) is the natural (\(d\)-dimensional) measure on \(E _d \). Cited in 1 ReviewCited in 5 Documents MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) Keywords:singular integrals; self similar sets PDF BibTeX XML Cite \textit{V. Chousionis}, Publ. Mat., Barc. 53, No. 1, 245--256 (2009; Zbl 1153.42005) Full Text: DOI arXiv EuDML OpenURL