zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anisotropic weak Hardy spaces and interpolation theorems. (English) Zbl 1153.42010
Summary: The authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.

42B30$H^p$-spaces (Fourier analysis)
42B99Fourier analysis in several variables
Full Text: DOI
[1] Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 16(1): 1--64 (1975) · Zbl 0315.46037 · doi:10.1016/0001-8708(75)90099-7
[2] Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution II. Adv Math, 24(2): 101--171 (1977) · Zbl 0355.46021 · doi:10.1016/S0001-8708(77)80016-9
[3] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Princeton: Princeton University Press, 1982 · Zbl 0508.42025
[4] Triebel H. Theory of Function Spaces. Monographs in Math, No. 78. Basel: Birkhäuser Verlag, 1983 · Zbl 0546.46028
[5] Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, No. 43. Princeton: Princeton University Press, 1993 · Zbl 0821.42001
[6] Bownik M. Anisotropic Hardy spaces and wavelets. Mem Amer Math Soc, 164(781): 1--122 (2003) · Zbl 1036.42020
[7] Fefferman C, Stein E M. H p spaces of several variables. Acta Math, 129(2): 137--193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[8] Fefferman C, Riviére N, Sagher Y. Interpolation between Hp spaces: the real method. Trans Amer Math Soc, 191(1): 75--81 (1974) · Zbl 0285.41006
[9] Fefferman R, Soria F. The spaces weak H 1. Studia Math, 85(1): 1--16 (1987) · Zbl 0626.42013
[10] Liu H P. The weak H p spaces on homogeneous groups. In: Lecture Notes in Math, Vol. 1494. Berlin: Springer-Verlag, 1991, 113--118 · Zbl 0801.42012
[11] Lu S Z. Four lectures on real H p spaces. Singapore: World Scientific Press, 1995 · Zbl 0839.42005
[12] Stein E M, Taibleson M, Weiss G. Weak type estimates for maximal operators on certain H p classes. Rend Circ Mat Palermo (2) Suppl, 1(1): 81--97 (1981) · Zbl 0503.42018
[13] Kalton N J. Linear operators on L p for 0 < p < 1. Trans Amer Math Soc, 259(2): 319--355 (1980) · Zbl 0439.46021
[14] Bergh J, Löfström J. Interpolation Spaces. Berlin: Springer-Verlag, 1976 · Zbl 0344.46071
[15] Stein E M. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton: Princeton University Press, 1970 · Zbl 0207.13501