# zbMATH — the first resource for mathematics

On the convolution equation with positive kernel expressed via an alternating measure. (English. Russian original) Zbl 1153.45003
Math. Notes 81, No. 5, 620-627 (2007); translation from Mat. Zametki 81, No. 5, 693-702 (2007).
The author considers finite interval convolution operators $f(x)=g(x)+\int_0^rK(x-t)f(t)\,dt, \qquad r<+\infty\tag{1}$ with a positive kernel
$K(x):=\int_a^be^{-| x| s}\,d\sigma(s)>0. \qquad x\in\mathbb{R},$ with an alternating measure $$\sigma(t)$$ such that
$\int_a^b\frac1\sigma | d\sigma(s)| <\infty, \qquad \int_{-\infty}^\infty K(t)dt=2\int_a^b\frac1\sigma \,d\sigma(s)\leq1.$ The solvability of the nonlinear Ambartsumyan equation
$\varphi(s)=1+\varphi(s)\int_a^b\frac{\varphi(p)d\sigma(p)}{s+p}, \qquad r<+\infty$ is proved by iteration and applies the solution to solve the above convolution equation (1).
##### MSC:
 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 45G05 Singular nonlinear integral equations 45L05 Theoretical approximation of solutions to integral equations
Full Text:
##### References:
 [1] V. A. Ambartsumyan, Selected Works (Izd. AN Armyan. SSR, Yerevan, 1960), Vol. 1 [in Russian]. [2] S. Chandrasekhar, Radiative Transfer (Oxford University Press, 1950; Inostr. Lit., Moscow, 1953). [3] V. V. Sobolev, Scattering of Light in the Atmospheres of Planets (Nauka, Moscow, 1972) [in Russian]. [4] C. Cercignani, Theory and Application of the Boltzmann Equation (Scott. Acad. Press, Edinburgh-London, 1975). · Zbl 0403.76065 [5] N. B. Engibaryan and A. A. Arutyunyan, ”Integral equations on the half-line with difference kernels and nonlinear functional equations,” Mat. Sb. 97(139) (1 (5)), 35–58 (1975). · Zbl 0324.45005 [6] L. G. Arabadzhyan and N. B. Engibaryan, ”Convolution equations and nonlinear functional equations,” in Mathematical Analysis (VINITI, Itogi Naukii Tekhniki, Moscow, 1984), Vol. 22, pp. 175–244 [in Russian]. · Zbl 0568.45004 [7] I. Ts. Gokhberg and I. A. Fel’dman, Convolution Equations and Projective Methods of Their Solution (Nauka, Moscow, 1971) [in Russian]. [8] L. A. Sakhnovich, ”Equations with difference kernel on a finite interval,” Uspekhi Mat. Nauk 35(4), 69–129 (1980). · Zbl 0444.45008 [9] J. Casti and R. Kalaba, Imbedding Methods in Applied Mathematics (Addison-Wesley Publ., Mass.-London-Amsterdam, 1973). · Zbl 0265.65001 [10] N. B. Engibaryan and M. A. Mnatsakyan, ”On an integral equation with difference kernel,” Mat. Zametki 19(6), 927–932 (1976). [11] N. B. Engibaryan and B. N. Engibaryan, ”Integral convolution equation on the half-line with a totally monotone kernel,” Mat. Sb. 187(10), 53–72 (1996) [Russian Acad. Sci. Sb. Math. 187 (10), 1465–1485 (1996)]. · Zbl 0873.45002 · doi:10.4213/sm164 [12] B. N. Engibaryan, ”On multiple factorization of integral operators,” Zh. Vychisl. Mat. i Mat. Fiz. 37(4), 447–458 (1997) [Comput. Math. Math. Phys. 37 (4), 435–446 (1997)]. · Zbl 0944.45002 [13] V. V. Ivanov, G. B. Rybicky, and A. M. Kasaurov, Albedo Shifting, Preprint, Ser. no. 3478 (Harvard-Smithsonian Center for Astrophysics, 1992). [14] N. B. Engibaryan and B. N. Engibaryan, ”The albedo shifting method,” Astrophizika 38(3), 417–431 (1995) [Astrophysics 38 (3), 232–240 (1995)]. [15] A. Kh. Khachatryan and A. N. Afyan, ”On the analytic and numerical solution of a radiative transfer problem in the presence of a reflecting surface,” Zh. Vychisl. Mat. i Mat. Fiz. 41(8), 1217–1228 (2001) [Comput. Math. Math. Phys. 41 (8), 1158–1168 (2001)].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.