Khludnev, Alexander M.; Kovtunenko, Victor A.; Tani, Atusi Evolution of a crack with kink and non-penetration. (English) Zbl 1153.49040 J. Math. Soc. Japan 60, No. 4, 1219-1253 (2008). Summary: The nonlinear evolution problem for a crack with a kink in elastic body is considered. This nonlinear formulation accounts the condition of mutual non-penetration between the crack faces. The kinking crack is presented with the help of two unknown shape parameters of the kink angle and of the crack length, which minimize an energy due to the Griffith hypothesis. Based on the obtained results of the shape sensitivity analysis, solvability of the evolutionary minimization problem is proved, and necessary conditions for the optimal crack are derived. Cited in 14 Documents MSC: 49Q10 Optimization of shapes other than minimal surfaces 49J40 Variational inequalities 49K10 Optimality conditions for free problems in two or more independent variables 74R10 Brittle fracture Keywords:crack with non-penetration; kink of crack; Griffith fracture; shape sensitivity analysis and optimization PDFBibTeX XMLCite \textit{A. M. Khludnev} et al., J. Math. Soc. Japan 60, No. 4, 1219--1253 (2008; Zbl 1153.49040) Full Text: DOI References: [1] M. Amestoy and J.-B. Leblond, Crack paths in plane situations, II: Detailed form of the expansion of the stress intensity factors, Int. J. Solids Struct., 29 (1992), 465-501. · Zbl 0755.73072 · doi:10.1016/0020-7683(92)90210-K [2] I. I. Argatov and S. A. Nazarov, Energy release caused by the kinking of a crack in a plane anisotropic solid, J. Appl. Math. Mech., 66 (2002), 491-503. · Zbl 1066.74578 [3] A. Ben Abda, H. Ben Ameur and M. Jaoua, Identification of 2D cracks by elastic boundary measurements, Inverse Problems, 15 (1999), 67-77. · Zbl 0921.35188 · doi:10.1088/0266-5611/15/1/011 [4] M. Brokate and A. M. Khludnev, On crack propagation shapes in elastic bodies, Z. Angew. Math. Phys., 55 (2004), 318-329. · Zbl 1099.74013 · doi:10.1007/s00033-3026-3 [5] B. Cotterell and J. R. Rice, Slightly curved or kinked cracks, Int. J. Fracture, 16 (1980), 155-169. [6] G. Dal Maso and R. Toader, A model for the quasistatic growth of brittle fractures: Existence and approximation results, Arch. Rational Mech. Anal., 162 (2002), 101-135. · Zbl 1042.74002 · doi:10.1007/s002050100187 [7] M. C. Delfour and J.-P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, SIAM, Philadelphia, 2001, p.,482. · Zbl 1002.49029 [8] P. Destuynder and M. Djaoua, Équivalence de l’intégrale de Rice et du taux de restitution de l’énergie en mécanique de la rupture fragile, C. R. Acad. Sci. Paris Sér. A-B, 290 (1980), A347-A350. · Zbl 0421.73092 [9] G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342. · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9 [10] A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38 (1989), 527-556. · Zbl 0697.35165 · doi:10.1512/iumj.1989.38.38025 [11] M. Hintermüller, V. A. Kovtunenko and K. Kunisch, An optimization approach for the delamination of a composite material with non-penetration. In: Free and Moving Boundaries: Analysis, Simulation and Control, (eds. R. Glowinski and J.-P. Zolesio), Lecture Notes in Pure and Applied Mathematics, 252 , Chapman & Hall/CRC, 2007, 331-348. · Zbl 1126.74040 · doi:10.1201/9781420011159.ch18 [12] H. Itou and A. Tani, Existence of a weak solution in an infinite viscoelastic strip with a semi-infinite crack, Math. Models Methods Appl. Sci., 14 (2004), 975-986. · Zbl 1088.35072 · doi:10.1142/S0218202504003519 [13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966, p.,592. · Zbl 0148.12601 [14] A. M. Khludnev, A. N. Leontiev and J. Herskovits, Nonsmooth domain optimization for elliptic equations with unilateral conditions, J. Math. Pures Appl., 82 (2003), 197-212. · Zbl 1112.49006 · doi:10.1016/S0021-7824(03)00005-9 [15] A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000, p.,408. · Zbl 0954.35076 [16] A. M. Khludnev and J. Sokolowski, Modelling and Control in Solid Mechanics, Birkhäuser, Basel, 1997, p.,384. · Zbl 0865.73003 [17] A. M. Khludnev, K. Ohtsuka and J. Sokolowski, On derivative of energy functional for elastic bodies with cracks and unilateral conditions, Quart. Appl. Math., 60 (2002), 99-109. · Zbl 1075.74040 [18] V. A. Kovtunenko, Invariant energy integrals for the non-linear crack problem with possible contact of the crack surfaces, J. Appl. Maths. Mechs., 67 (2003), 99-110. · Zbl 1067.74562 [19] V. A. Kovtunenko, Primal-dual methods of shape sensitivity analysis for curvilinear cracks with non-penetration, IMA J. Appl. Math., 71 (2006), 635-657. · Zbl 1112.74047 · doi:10.1093/imamat/hxl014 [20] V. A. Kovtunenko, Interface cracks in composite orthotropic materials and their delamination via global shape optimization, Optim. Eng., 7 (2006), 173-199. · Zbl 1175.74074 · doi:10.1007/s11081-006-6838-0 [21] V. A. Kovtunenko and K. Kunisch, Problem of crack perturbation based on level sets and velocities, Z. Angew. Math. Mech., 87 (2007), 809-830. · Zbl 1353.74064 [22] V. A. Kovtunenko and I. V. Sukhorukov, Optimization formulation of the evolutionary problem of crack propagation under quasibrittle fracture, Appl. Mech. Tech. Phys., 47 (2006), 704-713. · Zbl 1116.74051 [23] V. A. Kozlov, V. G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, AMS, Providence, RI, 1997, p.,414. · Zbl 0947.35004 [24] J.-B. Leblond and J. Frelat, Crack kinking from an interface crack with initial contact between the crack lips, European J. Mech. A Solids, 20 (2001), 937-951. · Zbl 1054.74040 · doi:10.1016/S0997-7538(01)01173-1 [25] D. Leguillon, Asymptotic and numerical analysis of a crack branching in nonisotropic materials, European J. Mech. A Solids, 12 (1993), 33-51. · Zbl 0767.73053 [26] K. Ohtsuka, Generalized \(J\)-integrals and three dimensional fracture mechanics I, Hiroshima Math. J., 11 (1981), 21-52. · Zbl 0484.73087 [27] E. M. Rudoy, Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks, J. Appl. Mech. Tech. Phys., 45 (2004), 843-852. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.