Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas A basic convergence result for conforming adaptive finite elements. (English) Zbl 1153.65111 Math. Models Methods Appl. Sci. 18, No. 5, 707-737 (2008). The approximate solution with adaptive finite elements for a class of linear boundary value problems (including saddle point problems) is considered. Refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids. The finite element spaces are conforming, nested, and satisfy the inf-sup condition. The error estimator is reliable as well as locally and discretely efficient. The marked elements are subdivided at least once. A sufficient and essentially necessary condition for the convergence of the finite element solution to the exact solution is given. This condition is not only satisfied by W. Dörfler’s strategy [SIAM J. Numer. Anal. 33, No.3, 1106–1124 (1996; Zbl 0854.65090)], but also by the maximum strategy and the equidistribution strategy. Reviewer: Wilhelm Heinrichs (Essen) Cited in 68 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs Keywords:Adaptivity; conforming finite elements; convergence Citations:Zbl 0854.65090 Software:ALBERTA PDF BibTeX XML Cite \textit{P. Morin} et al., Math. Models Methods Appl. Sci. 18, No. 5, 707--737 (2008; Zbl 1153.65111) Full Text: DOI OpenURL References: [1] DOI: 10.1002/9781118032824 [2] DOI: 10.1007/BF02165003 · Zbl 0214.42001 [3] DOI: 10.1016/0045-7825(87)90114-9 · Zbl 0593.65064 [4] Babuška I., The Finite Element Method and Its Reliability (2001) [5] DOI: 10.1137/0715049 · Zbl 0398.65069 [6] DOI: 10.1007/BF01389757 · Zbl 0574.65098 [7] DOI: 10.1016/0899-8248(91)90006-G · Zbl 0744.65074 [8] DOI: 10.1137/S0036142901392134 · Zbl 1027.65148 [9] DOI: 10.1007/s00211-003-0492-7 · Zbl 1063.65120 [10] Braess D., Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics (2001) · Zbl 0976.65099 [11] Brezzi F., R.A.I.R.O. Anal. Numer. 2 pp 129– [12] DOI: 10.1142/S0218202507002492 · Zbl 1144.65064 [13] DOI: 10.1090/S0025-5718-02-01402-3 · Zbl 0997.65126 [14] DOI: 10.1090/S0025-5718-06-01829-1 · Zbl 1094.65112 [15] DOI: 10.1090/S0025-5718-04-01634-5 · Zbl 1052.65091 [16] DOI: 10.1137/0733054 · Zbl 0854.65090 [17] DOI: 10.1007/978-1-4612-5364-8 [18] DOI: 10.1016/0377-0427(94)90034-5 · Zbl 0823.65119 [19] DOI: 10.1137/04060929X · Zbl 1104.65103 [20] DOI: 10.1137/S0036142999360044 · Zbl 0970.65113 [21] DOI: 10.1090/S0025-5718-02-01463-1 · Zbl 1019.65083 [22] Morin P., Applied and Industrial Mathematics in Italy II (2007) [23] DOI: 10.1142/S0218202506001170 · Zbl 1092.65098 [24] Schmidt A., Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA (2005) · Zbl 1068.65138 [25] Siebert K. G., Oberwolfach Rep. 2 pp 2129– [26] DOI: 10.1137/05064597X · Zbl 1154.90008 [27] DOI: 10.1007/s10208-005-0183-0 · Zbl 1136.65109 [28] DOI: 10.1007/s002110100377 · Zbl 1016.65083 [29] DOI: 10.1007/BF01390056 · Zbl 0674.65092 [30] Verfürth R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996) · Zbl 0853.65108 [31] DOI: 10.1007/s002110100308 · Zbl 1028.65115 [32] DOI: 10.1007/978-1-4612-0985-0 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.