×

Automatic and adaptive calibration of 3D field sensors. (English) Zbl 1153.68428

Summary: Embedded sensors are an emerging trend in mobile consumer devices. Calibration of the sensors in this environment can be prohibitively difficult for the user. We propose an automatic calibration algorithm that can be used for any three-dimensional sensor sensing some external field. In particular, it is suitable for calibrating a three-axis magnetometer. The algorithm is based on recursive fitting of an ellipsoid to collected samples from the sensor. It can adaptively update the calibration parameters and is completely invisible to the user.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kari Laurila, Timo Pylvänäinen, Samuli Silanto, Antti Virolainen, Wireless Motion Bands, Monitoring, Measuring and Motivating Exercise Workshop at Ubicomp 2005, Tokyo.; Kari Laurila, Timo Pylvänäinen, Samuli Silanto, Antti Virolainen, Wireless Motion Bands, Monitoring, Measuring and Motivating Exercise Workshop at Ubicomp 2005, Tokyo.
[2] Zhu, Rong; Zhou, Zhaoying, A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package, IEEE Trans. Neural Systems Rehabil. Eng., 12, 2 (2004)
[3] Crassidis, John L.; Lai, Kok-Lam; Harman, Richard R., Real-time attitude-independent three-axis magnetometer calibration, J. Guidance Control Dynam., 28, 1, 115-120 (2005)
[4] Alonso, Roberto; Shuster, Malcolm D., Attitude-independent magnetometer-bias determination: a survey, J. Astronaut. Sci., 50, 4, 453-457 (2002)
[5] Alonso, Roberto; Shuster, Malcolm D., Complete linear attitude-independent magnetometer calibration, J. Astronaut. Sci., 50, 4, 477-490 (2002), 0731-5090
[6] D.A. Turner, I.J. Anderson, J.C. Mason, An algorithm for fitting and ellipsoid to data, Technical Report. RR9803, School of Computing and Mathematics, University of Huddersfield, 1999.; D.A. Turner, I.J. Anderson, J.C. Mason, An algorithm for fitting and ellipsoid to data, Technical Report. RR9803, School of Computing and Mathematics, University of Huddersfield, 1999.
[7] Golub, Gene H.; Van Loan, Charles F., Matrix Computations (1996), John Hopkins University Press · Zbl 0865.65009
[8] Kincaid, David; Cheney, Ward, Numerical Analysis (1996), Brooks/Cole · Zbl 0877.65002
[9] Hans-Joachim von der Hardt, Renè Husson, An automatic calibration method for a multisensor system: application to a mobile robot localization system, in: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Lauven, Belgium, May 1996, pp. 3141-3146.; Hans-Joachim von der Hardt, Renè Husson, An automatic calibration method for a multisensor system: application to a mobile robot localization system, in: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Lauven, Belgium, May 1996, pp. 3141-3146.
[10] M.J. Caruso, Applications of magnetic sensors for low cost compass systems, Honeywell Solid State Electronics Center—Magnetic Sensors. <http://www.ssec.honeywell.com/magnetic/datasheets/lowcost.pdf>; M.J. Caruso, Applications of magnetic sensors for low cost compass systems, Honeywell Solid State Electronics Center—Magnetic Sensors. <http://www.ssec.honeywell.com/magnetic/datasheets/lowcost.pdf>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.