×

A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second-grade fluid with fractional derivative. (English) Zbl 1153.76049

Summary: We consider Stokes’ first problem for a heated generalized second-grade fluid with fractional derivative (SFP-HGSGF). Implicit and explicit numerical approximation schemes for the SFP-HGSGF are presented. The stability and convergence of the numerical schemes are discussed using a Fourier method. In addition, the solvability of the implicit numerical approximation scheme is also analyzed. A Richardson extrapolation technique for improving the order of convergence of the implicit scheme is proposed. Finally, a numerical test is given. The numerical results demonstrate good performance of our theoretical analysis.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76A10 Viscoelastic fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Chen, Chang-Ming; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 886-897 (2007) · Zbl 1165.65053
[2] Chen, Chang-Ming; Liu, F.; Turner, I.; Anh, V., A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation, ANZIAM J., 48, C605-619 (2007)
[3] Fetecau, C.; Conna, F., The Rayleigh-Stokes problem for heated second grade fluids, Internat. J. Non-Linear Mech., 37, 1011-1015 (2002) · Zbl 1346.76027
[4] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[5] Liu, F.; Anh, V.; Turner, I., Numerical Solution of the Space Fractional Fokker-Planck Equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[6] Liu, F.; Anh, V.; Turner, I.; Zhuang, P., Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E), 461-473 (2004) · Zbl 1123.76363
[7] Liu, F.; Shen, S.; Anh, V.; Turner, I., Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J., 46(E), 488-504 (2005) · Zbl 1082.60511
[8] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, J. Appl. Math. Comput., 191, 12-21 (2007) · Zbl 1193.76093
[9] Liu, Q.; Liu, F.; Turner, I.; Anh, V., Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method, J. Comput. Phys., 222, 57-70 (2007) · Zbl 1112.65006
[10] Meerschaert, M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[11] Rajagopal, K. R., On the decay of vortices in a second grade fluid, Meccanica, 9, 185-188 (1980) · Zbl 0463.76001
[12] Rajagopal, K. R.; Gupta, A. S., On a class of exact solution to the equations of motion of a second grade fluid, Internat. J. Eng. Sci., 19, 1009-1014 (1981) · Zbl 0466.76008
[13] Roop, J. P., Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in \(R^2\), J. Comput. Appl. Math., 193, 1, 243-268 (2006) · Zbl 1092.65122
[14] Shen, F.; Tan, W. C.; Zhao, Y.; Masuoka, T., The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model, Nonlinear Anal. RWA, 7, 5, 1072-1080 (2006) · Zbl 1113.76016
[15] Shen, S.; Liu, F., Error analysis of an explicit finite difference approximation for the space fractional diffusion, ANZIAM J., 46(E), 871-887 (2005)
[16] Tan, W. C.; Xu, M. Y., Plate surface suddenly set in motion in a vicoelastic fluid with fractional Maxwell model, Acta Mech. Sin., 18, 342-349 (2002)
[17] Tan, W. C.; Xu, M. Y., The impulsive motion of flat plate in a general second grade fluid, Mech. Res. Commun., 29, 3-9 (2002) · Zbl 1151.76368
[18] Tan, W. C.; Pan, W. X.; Xu, M. Y., A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Internat. J. Non-Linear Mech., 38, 645-650 (2003) · Zbl 1346.76009
[19] Tan, W. C.; Xu, M. Y., Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates, Acta Mech. Sin., 471-476 (2004)
[20] Tan, W. C.; Masuoka, T., Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary, Internat. J. Non-Linear Mech., 40, 515-522 (2005) · Zbl 1349.76830
[22] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379
[23] Zhuang, P.; Liu, F., Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22, 3, 87-99 (2006) · Zbl 1140.65094
[24] Diethelm, K.; Walz, G., Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16, 231-251 (1997) · Zbl 0926.65070
[25] Diethelm, K.; Ford, N. J.; Feed, A. D.; Luchko, Yu., Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194, 743-773 (2005) · Zbl 1119.65352
[26] Tadjeran, Charles; Mark, M., Meerschaert, Hans-Petter Scheffier, A second order accurate numerical approximation for the fractional diffution equation, J. Comput. Phys., 213, 205-213 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.