zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second-grade fluid with fractional derivative. (English) Zbl 1153.76049
Summary: We consider Stokes’ first problem for a heated generalized second-grade fluid with fractional derivative (SFP-HGSGF). Implicit and explicit numerical approximation schemes for the SFP-HGSGF are presented. The stability and convergence of the numerical schemes are discussed using a Fourier method. In addition, the solvability of the implicit numerical approximation scheme is also analyzed. A Richardson extrapolation technique for improving the order of convergence of the implicit scheme is proposed. Finally, a numerical test is given. The numerical results demonstrate good performance of our theoretical analysis.

76M25Other numerical methods (fluid mechanics)
76A10Viscoelastic fluids
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Chen, Chang-Ming; Liu, F.; Turner, I.; Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion, J. comput. Phys. 227, 886-897 (2007) · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[2] Chen, Chang-Ming; Liu, F.; Turner, I.; Anh, V.: A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation, Anziam j. 48, No. C605--619 (2007)
[3] Fetecau, C.; Conna, F.: The Rayleigh--Stokes problem for heated second grade fluids, Internat. J. Non-linear mech. 37, 1011-1015 (2002)
[4] Langlands, T. A. M.; Henry, B. I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. comput. Phys. 205, 719-736 (2005) · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[5] Liu, F.; Anh, V.; Turner, I.: Numerical solution of the space fractional Fokker-Planck equation, J. comput. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[6] Liu, F.; Anh, V.; Turner, I.; Zhuang, P.: Numerical simulation for solute transport in fractal porous media, Anziam j. 45(E), 461-473 (2004) · Zbl 1123.76363
[7] Liu, F.; Shen, S.; Anh, V.; Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, Anziam j. 46(E), 488-504 (2005)
[8] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, J. appl. Math. comput. 191, 12-21 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[9] Liu, Q.; Liu, F.; Turner, I.; Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method, J. comput. Phys. 222, 57-70 (2007) · Zbl 1112.65006 · doi:10.1016/j.jcp.2006.06.005
[10] Meerschaert, M.; Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations, J. comput. Appl. math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[11] Rajagopal, K. R.: On the decay of vortices in a second grade fluid, Meccanica 9, 185-188 (1980) · Zbl 0463.76001 · doi:10.1007/BF02128929
[12] Rajagopal, K. R.; Gupta, A. S.: On a class of exact solution to the equations of motion of a second grade fluid, Internat. J. Eng. sci. 19, 1009-1014 (1981) · Zbl 0466.76008 · doi:10.1016/0020-7225(81)90135-X
[13] Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2, J. comput. Appl. math. 193, No. 1, 243-268 (2006) · Zbl 1092.65122 · doi:10.1016/j.cam.2005.06.005
[14] Shen, F.; Tan, W. C.; Zhao, Y.; Masuoka, T.: The Rayleigh--Stokes problem for a heated generalized second grade fluid with fractional derivative model, Nonlinear anal. RWA 7, No. 5, 1072-1080 (2006) · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007
[15] Shen, S.; Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion, Anziam j. 46(E), 871-887 (2005)
[16] Tan, W. C.; Xu, M. Y.: Plate surface suddenly set in motion in a vicoelastic fluid with fractional Maxwell model, Acta mech. Sin. 18, 342-349 (2002)
[17] Tan, W. C.; Xu, M. Y.: The impulsive motion of flat plate in a general second grade fluid, Mech. res. Commun. 29, 3-9 (2002) · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[18] Tan, W. C.; Pan, W. X.; Xu, M. Y.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Internat. J. Non-linear mech. 38, 645-650 (2003) · Zbl 05138171
[19] Tan, W. C.; Xu, M. Y.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates, Acta mech. Sin., 471-476 (2004)
[20] Tan, W. C.; Masuoka, T.: Stokes first problem for a second grade fluid in a porous half-space with heated boundary, Internat. J. Non-linear mech. 40, 515-522 (2005) · Zbl 05138608
[21] Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and nonlinear space-time fractional reaction--diffusion equations by Adomian decomposition method, Internat. J. Numer. Meth. Eng. (2007) (in press) · Zbl 1159.76367
[22] Yuste, S. B.; Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. anal. 42, No. 5, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[23] Zhuang, P.; Liu, F.: Implicit difference approximation for the time fractional diffusion equation, J. appl. Math. comput. 22, No. 3, 87-99 (2006) · Zbl 1140.65094 · doi:10.1007/BF02832039
[24] Diethelm, K.; Walz, G.: Numerical solution of fractional order differential equations by extrapolation, Numer. algorithms 16, 231-251 (1997) · Zbl 0926.65070 · doi:10.1023/A:1019147432240
[25] Diethelm, K.; Ford, N. J.; Feed, A. D.; Luchko, Yu.: Algorithms for the fractional calculus: A selection of numerical methods, Comput. methods appl. Mech. eng. 194, 743-773 (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[26] Tadjeran, Charles; Mark, M.: Meerschaert, hans-petter scheffier, A second order accurate numerical approximation for the fractional diffution equation, J. comput. Phys. 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008