Enhancement of external forced convection by ionic wind. (English) Zbl 1153.80315

Summary: An ionic wind is formed when air ions are accelerated by an electric field and exchange momentum with neutral air molecules, causing air flow. Because ionic winds can generate flow with no moving parts and have low power consumption, they offer an attractive method for enhancing convection heat transfer from a surface. In the present work, corona discharges are generated between a steel wire and copper-tape electrode pair on a flat plate, perpendicular to the bulk flow direction such that the ensuing ionic wind is in the direction of the bulk flow. The corona discharge current is characterized, and experimental measurements of heat transfer from a flat plate are reported. Infrared images demonstrate that the cooling occurs along the entire length of the wire, and local heat transfer coefficients are shown to increase by more than 200% above those obtained from bulk flow alone. The magnitude of the corona current and the heat flux on the flat plate are varied. The heat transfer coefficient is shown to be related to the fourth root of the corona current both analytically and experimentally, and heat transfer enhancement is seen to be solely a hydrodynamic effect. Variation of the spacing between electrodes demonstrates that while the local peak enhancement is largely unaffected, the area of heat transfer enhancement is dependent on this spacing.


80A20 Heat and mass transfer, heat flow (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI Link


[1] Chattock, A.: On the velocity and mass of ions in the electric wind in air, Philos. mag. 48, 401-420 (1899)
[2] Stuetzer, O.: Ion drag pressure generation, J. appl. Phys. 30, 984-994 (1959)
[3] Robinson, M.: Movement of air in the electric wind of the corona discharge, Transfer. am. Inst. electr. Eng. (AIEE J.), 143-150 (1961)
[4] S.M. Marco, H.R. Velkoff, Effect of electrostatic fields on free convection heat transfer, ASME Paper No. 63-HT-9, 1963.
[5] Kibler, K. G.; Jr., H. G. Carter: Electrocooling in gases, J. appl. Phys. 45, 4436-4440 (1974)
[6] Owsenek, B. L.; Seyed-Yagoobi, J.: Theoretical and experimental study of electrohydrodynamic heat transfer enhancement through wire-plate corona discharge, J. heat transfer. 119, 604-610 (1997)
[7] Owsenek, B. L.; Seyed-Yagoobi, J.; Page, R. H.: Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plate, J. heat transfer. 117, 309-315 (1995)
[8] Kalman, H.; Sher, E.: Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly, Appl. therm. Eng. 21, 265-282 (2001)
[9] Jewell-Larsen, N. E.; Tran, E.; Krichtafovitch, I. A.; Mamishev, A. V.: Design and optimization of electrostatic fluid accelerators, IEEE transfer. Dielect. electr. Insulat. 13, 191-203 (2006)
[10] Takimoto, A.; Tada, Y.; Hayashi, Y.; Yamada, K.: Convective heat transfer enhancement by a corona discharge, Heat transfer.: jpn. Res. 20, 19-35 (1991)
[11] Nelson, D. A.; Zia, S.; Whipple, R. L.; Ohadi, M. M.: Corona discharge effects on heat transfer and pressure drop in tube flows, Enhanc. heat transfer. 7, 81-95 (1998)
[12] Molki, M.; Bhamidipati, K. L.: Enhancement of convective heat transfer in the developing region of circular tubes using corona wind, Int. J. Heat mass transfer. 47, 4301-4314 (2004)
[13] Ohadi, M. M.; Nelson, D. A.; Zia, S.: Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge, Int. J. Heat mass transfer. 34, 1175-1187 (1991)
[14] Wangnipparnto, S.; Tiansuwan, J.; Jiracheewanun, S.; Kiatsiriroat, T.; Wang, C. C.: Air side performance of thermosyphon heat exchanger in low Reynolds number region: with and without electric field, Energ. convers. Manage. 43, 1791-1800 (2002)
[15] F. Soetomo, The influence of high voltage discharge on flat plate drag at low Reynolds number air flow, M.S. Thesis, Iowa State University, Ames, IA, 1992.
[16] Léger, L.; Moreau, E.; Touchard, G.: Control of low velocity airflow along a flat plate with a dc electrical discharge, IEEE trans. Ind. appl. 38, 1478-1485 (2002)
[17] Artana, G.; D’adamo, J.; Léger, L.; Moreau, E.; Touchard, G.: Flow control with electrohydrodynamic actuators, Aiaa j. 40, 1773-1779 (2002)
[18] Velkoff, H. R.; Godfrey, R.: Low-velocity heat transfer to a flat plate in the presence of a corona discharge in air, J. heat transfer. 101, 157-163 (1979)
[19] D.J. Schlitz, S.V. Garimella, T.S. Fisher, Microscale ion-driven air flow over a flat plate, HT-FED04-56470, in: Proceedings of ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, July 2004.
[20] Hsu, C. P.; Jewell-Larsen, N. E.; Krichtafovitch, I. A.; Montgomery, S. W.; Ii, J. T. Dibene; Mamishev, A. V.: Miniaturization of electrostatic fluid accelerators, J. microelectromech. Syst. 16, 809-815 (2007)
[21] Zhang, W.; Fisher, T. S.; Garimella, S. V.: Simulation of ion generation and breakdown in atmospheric air, J. appl. Phys. 96, 6066-6072 (2004)
[22] D.B. Go, T.S. Fisher, S.V. Garimella, Direct simulation Monte Carlo analysis of microscale field emission and ionization of atmospheric air, IMECE 2006-14476, in: Proceedings of ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, 2006.
[23] Peterson, M. S.; Zhang, W.; Fisher, T. S.; Garimella, S. V.: Low-voltage ionization of air with carbon-based materials, Plasma sour. Sci. technol. 14, 654-660 (2005)
[24] D.B. Go, S.V. Garimella, T.S. Fisher, Numerical simulation of microscale ionic wind for local cooling enhancement, in: Proceedings of Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electrical Systems, San Diego, CA, 2006.
[25] Go, D. B.; Fisher, T. S.; Garimella, S. V.: Ionic winds for locally enhanced cooling, J. appl. Phys. 102 (2007)
[26] Washburn, E. W.: International critical tables of numerical data physics chemistry and technology, (2003)
[27] Boulos, M.; Fauchais, P.; Pfender, E.: Thermal plasmas: fundamentals and applications, Thermal plasmas: fundamentals and applications 1 (1994)
[28] NASA, Data on the emissivity of a variety of black paints, <http://masterweb.jpl.nasa.gov/reference/paints.htm>, 2003 (accessed 22.08.06).
[29] Taylor, J. R.: An introduction to error analysis, (1997)
[30] Incropera, F. P.; Dewitt, D. P.: Fundamentals of heat and mass transfer, (2002)
[31] Bejan, A.: Convection heat transfer, (2004) · Zbl 1079.76648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.