Combined effects of curvature, radiation, and stretch on the extinction of premixed tubular flames. (English) Zbl 1153.80349

Summary: The combined effects of flame curvature, radiation, and stretch on the extinction of premixed tubular flames are investigated by using the large-activation-energy asymptotic method with a non-linear radiation model. A general expression for flame speed, flame temperature and extinction limits is obtained and it is used to study the radiation and flame curvature coupling at different Lewis numbers. The results show that the coupling between radiation and flame curvature leads to multiple flame bifurcations and extinction limits. Furthermore, both the stretch and radiation extinction limits are found to be greatly affected by flame curvature.


80A25 Combustion
80A20 Heat and mass transfer, heat flow (MSC2010)
78A40 Waves and radiation in optics and electromagnetic theory
76R50 Diffusion


Full Text: DOI


[1] Spalding, D. B.: A theory of inflammability limits and flame-quenching, Proc. R. Soc. London, ser. A 240, 82-100 (1957) · Zbl 0079.21807
[2] Buckmaster, J.: The quenching of deflagration waves, Combust. flame 26, 151-162 (1976)
[3] Sohrab, S. H.; Law, C. K.: Extinction of premixed flames by stretch and radiative lossint, J. heat mass trans. 27, 291-300 (1984) · Zbl 0533.76115
[4] Maruta, K.; Yoshida, M.; Ju, Y.; Niioka, T.: Experimental study on methane – air premixed flame extinction at small stretch rates in microgravity, Proc. combust. Inst. 26, 1283-1289 (1996)
[5] Sung, C. J.; Law, C. K.: Extinction mechanisms of near-limit premixed flames and extended limits of flammability, Proc. combust. Inst. 26, 865-873 (1996)
[6] Buckmaster, J.: The effects of radiation of stretched flames, Combust. theory modell. 1, 1-11 (1997) · Zbl 1046.80501
[7] Guo, H.; Ju, Y.; Maruta, K.; Niioka, T.; Liu, F.: Radiation extinction limit of counterflow premixed lean methane – air flames, Combust. flame 109, 639-646 (1997)
[8] Ju, Y.; Guo, H.; Maruta, K.; Liu, F.: On the extinction limit and flammability limit of nonadiabatic stretched methane-air premixed flame, J. fluid mech. 342, 315-334 (1997) · Zbl 0900.76739
[9] Ju, Y.; Guo, H.; Liu, F.; Maruta, K.: Effects of the Lewis number and radiative heat loss on the bifurcation and extinction of CH4/O2-N2-he flames, J. fluid mech. 379, 165-190 (1999) · Zbl 0938.76104
[10] Ju, Y.; Masuya, G.; Liu, F.; Hattori, Y.; Riechelmann, D.: Asymptotic analysis of radiation extinction of stretched premixed fames, Int. J. Heat mass transfer 43, 231-239 (2000) · Zbl 0968.76093
[11] Liu, F.; Smallwood, G. J.; Gülder, Ö.L.; Ju, Y.: Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers, Combust. flame 121, 275-287 (2000)
[12] Chen, Z.; Ju, Y.: Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. theory modell. 11, 427-453 (2007) · Zbl 1113.80024
[13] Takeno, T.; Ishizuka, S.: A tubular flame theory, Combust. flame 64, 83-98 (1986)
[14] Takeno, T.; Nishioka, M.; Ishizuka, S.: A theory study of extinction of a tubular flame, Combust. flame 66, 271-283 (1986)
[15] Kobayashi, H.; Kitano, M.: Extinction characteristics of s stretched cylindrical premixed flame, Combust. flame 76, 285-295 (1989)
[16] Kobayashi, H.; Kitano, M.: Effects of equivalence ratio on the extinction stretch rate of cylindrical premixed flames, Combust. sci. Technol. 89, 253-263 (1993)
[17] Mosbacher, D. M.; Wehrmeyer, J. A.; Pitz, R. W.; Sung, C. J.; Byrd, J. L.: Experimental and numerical investigation of premixed tubular flames, Proc. combust. Inst. 29, 1479-1486 (2002)
[18] P. Wang, S. Hu, J.A. Wehrmeyer, R.W. Pitz, Stretch and curvature effects on flames, in: 42nd AIAA Aerospace Sciences Meeting, 2004, No. AIAA-2004-0148.
[19] Wang, P.; Wehrmeyer, J. A.; Pitz, R. W.: Stretch rate of tubular premixed flames, Combust. flame 145, 401-414 (2006)
[20] Matthews, M. T.; Dlugogorski, B. Z.; Kennedy, E. M.: The asymptotic structure of premixed tubular flames, Combust. flame 144, 838-849 (2006)
[21] T. Yokomori, Z. Chen, Y. Ju, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, No. AIAA-2006-0161.
[22] Ju, Y.; Matsumi, H.; Takita, K.; Masuya, G.: Combined effects of radiation flame curvature and stretch on the extinction and bifurcations of cylindrical CH4/air premixed flame, Combust. flame 116, 580-592 (1999)
[23] F.A. Williams, A review of some theoretical considerations of turbulent flame structure, in: Agard Conference Proceedings, No.164, 1975, pp. 1 – 25.
[24] Matalon, M.: On flame stretch, Combust. sci. Technol. 31, 169-181 (1983)
[25] Glassman, I.: Combustion, (1996)
[26] Sivashinsky, G. I.: Diffusional-thermal theory of cellular flames, Combust. sci. Technol. 15, 137-146 (1977)
[27] Joulin, G.; Clavin, P.: Linear stability analysis of nonadiabatic flames: diffusional-thermal model, Combust. flame 35, 139-153 (1979)
[28] Law, C. K.: Combustion physics, (2006)
[29] Piessens, R.; Doncker-Kapenger, E.; Ueberhuber, C.; Kahaner, D.: QUADPACK, a subroutine package for automatic integration, (1983) · Zbl 0508.65005
[30] Chen, Z.; Qin, X.; Xu, B.; Ju, Y.; Liu, F.: Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures, Proc. combust. Inst. 31, 2693-2700 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.