Analysis of generalized optimal current lattice model for traffic flow. (English) Zbl 1153.82327


82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
90B20 Traffic problems in operations research
82C27 Dynamic critical phenomena in statistical mechanics
Full Text: DOI


[1] DOI: 10.1063/1.1721265
[2] DOI: 10.1103/PhysRevE.48.R2335
[3] Xue Y., Chin. Phys. 11 pp 1128–
[4] DOI: 10.1088/1009-1963/14/3/027
[5] Li Z. P., Chin. Phys. 15 pp 1570–
[6] DOI: 10.1103/PhysRevE.51.1035
[7] DOI: 10.1088/0305-4470/34/50/307 · Zbl 1004.34067
[8] DOI: 10.1103/PhysRevE.52.5574
[9] Nagatani T., Phys. Rev. E 60 pp 6035–
[10] DOI: 10.1098/rspa.1955.0088 · Zbl 0064.20905
[11] DOI: 10.1287/opre.4.1.42
[12] DOI: 10.1016/S0378-4371(98)00347-1
[13] Xue Y., Acta Phsica Sinica 53 pp 0025–
[14] DOI: 10.1103/PhysRevE.71.066119
[15] DOI: 10.1016/S0370-1573(99)00117-9
[16] DOI: 10.1103/RevModPhys.73.1067
[17] DOI: 10.1088/0034-4885/65/9/203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.