Bali, Raj; Chandnani, Naresh Kumar Bianchi type-I cosmological model for perfect fluid distribution in Lyra geometry. (English) Zbl 1153.85310 J. Math. Phys. 49, No. 3, 032502, 8 p. (2008). Summary: In this paper, we have investigated Bianchi type-I cosmological model with time dependent gauge function \(\beta\) for perfect fluid distribution within the framework of Lyra geometry. To get the deterministic model of the universe, we have assumed that eigenvalue \((\sigma^1_1)\) of shear tensor \((\sigma^j_i)\) is proportional to the expansion \((\theta)\). This leads to \(A=(BC)^n\), where \(A,B,C\) are metric potentials. The physical and geometrical aspects of the model and singularities in the model are also discussed. Cited in 20 Documents MSC: 83C15 Exact solutions to problems in general relativity and gravitational theory 83F05 Relativistic cosmology 85A40 Astrophysical cosmology PDF BibTeX XML Cite \textit{R. Bali} and \textit{N. K. Chandnani}, J. Math. Phys. 49, No. 3, 032502, 8 p. (2008; Zbl 1153.85310) Full Text: DOI References: [1] Raychaudhary A. K., Theoretical Cosmology (1979) [2] DOI: 10.1103/PhysRevLett.18.557 [3] DOI: 10.1063/1.1664720 [4] DOI: 10.1080/00018736300101283 [5] DOI: 10.1007/BF01175135 · Zbl 0042.15902 [6] DOI: 10.1007/BF01333146 [7] DOI: 10.1063/1.1665623 · Zbl 0211.24804 [8] DOI: 10.1071/PH700863 [9] DOI: 10.1007/BF00759100 [10] DOI: 10.1093/mnras/108.5.372 · Zbl 0031.38304 [11] DOI: 10.1098/rspa.1963.0072 · Zbl 0116.44601 [12] DOI: 10.1063/1.529495 · Zbl 0736.76084 [13] Chakraborty S., Int. J. Mod. Phys. D 9 pp 543– (2000) [14] DOI: 10.1142/S0218271801001232 · Zbl 1155.83360 [15] DOI: 10.1142/S0218271803003104 [16] Thorne K. S., Astrophys. Space Sci. 148 pp 51– (1967) [17] DOI: 10.1063/1.1704952 [18] DOI: 10.1086/148522 [19] DOI: 10.1007/BF00763057 · Zbl 0453.53046 [20] G. F. R. Ellis, in General Relativity and Cosmology, edited by R. K. Sachs (Academic, New York, 1971), p. 117. [21] DOI: 10.1007/BF01646733 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.