zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal investment decisions when time-horizon is uncertain. (English) Zbl 1153.91018
Summary: Many investors do not know with certainty when their portfolio will be liquidated. Should their portfolio selection be influenced by the uncertainty of exit time? In order to answer this question, we consider a suitable extension of the familiar optimal investment problem of {\it R. C. Merton} [J. Econ. Theory 3, No. 4, 373--413 (1971; Zbl 1011.91502)], where we allow the conditional distribution function of an agent’s time-horizon to be stochastic and correlated to returns on risky securities. In contrast to existing literature, which has focused on an independent time-horizon, we show that the portfolio decision is affected.

91B28Finance etc. (MSC2000)
91B30Risk theory, insurance
Full Text: DOI
[1] Blanchet-Scaillet, C.; El Karoui, N.; Martellini, L.: Dynamic asset pricing theory with uncertain time-horizon, Journal of economic dynamic and control 29, No. 10, 1737-1764 (2005) · Zbl 1198.91078 · doi:10.1016/j.jedc.2004.10.002
[2] Bouchard; Pham, H.: Wealth-path dependant utility maximisation in incomplete markets, Finance and stochastics 8, No. 4, 579-603 (2004) · Zbl 1063.91029 · doi:10.1007/s00780-004-0125-8
[3] Collin, D.P., Hugonnier, J., 2004. Pricing and Hedging in the Presence of Extraneous Risks. Haas School of Business, U.C. Berkeley (preprint). · Zbl 1124.91044
[4] Cox, J. C.; Huang, C. -F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process, Journal of economic theory 49, 33-83 (1989) · Zbl 0678.90011 · doi:10.1016/0022-0531(89)90067-7
[5] Dellacherie, C.: Capacités et processus stochastiques, (1972) · Zbl 0246.60032
[6] Fleming, W. H.; Soner, H.: Controlled Markov processes and viscosity solutions, Applications of mathematics 25 (1993) · Zbl 0773.60070
[7] Hakansson, N.: Optimal investment and consumption strategies under risk, an uncertain lifetime, and insurance, International economic review 10, 443-466 (1969) · Zbl 0195.21902 · doi:10.2307/2525655
[8] Hakansson, N.: Optimal entrepreuneurial decisions in a completely stochastic environment, Management science 17, 427-449 (1971) · Zbl 0219.90006 · doi:10.1287/mnsc.17.7.427
[9] Huang, C. -F.; Pagès, H.: Optimal consumption and portfolio policies with an infinite horizon: existence and convergence, The annals of applied probability 21, 36-64 (1992) · Zbl 0749.60039 · doi:10.1214/aoap/1177005770
[10] Huang, M.: Liquidity shock and equilibrium liquidity premia, Journal of economic theory 109, 104-129 (2003) · Zbl 1058.91038 · doi:10.1016/S0022-0531(02)00039-X
[11] Huang, D., Zhu, S.-S., Fabozzi, F., Fukushima, M., forthcoming. Robust CVaR approach to portfolio selection with uncertain exit time. Journal of Economic Dynamic and Control. · Zbl 1181.91292
[12] Karatzas, I., 1996. Lectures on the Mathematics of Finance. CRM Monograph Series, Montréal, vol. 8. · Zbl 0878.90010
[13] Karatzas, I.; Lehoczky, J. P.; Shreve, S. E.: Optimal portfolio and consumption decisions for a ’small investor’ on a finite horizon, SIAM journal of control and optimization 25, 1557-1586 (1987) · Zbl 0644.93066 · doi:10.1137/0325086
[14] Karatzas, I., Wang, H., 2001. Utility maximization with discretionary stopping. SIAM Journal on Control & Optimisation 39, 306 -- 329. · Zbl 0963.93079
[15] Markowitz, H.: Portfolio selection, Journal of finance 7, 77-91 (1952)
[16] Martellini, L.; Urošević, B.: Static mean variance analysis with uncertain time-horizon, Management science 52, No. 6, 955-964 (2005)
[17] Merton, R. C.: Optimal consumption and portfolio rules in a continuous-time model, Journal of economic theory 3, 373-413 (1971) · Zbl 1011.91502
[18] Merton, R. C.: An intertemporal capital asset pricing model, Econometrica 41, 867-888 (1973) · Zbl 0283.90003 · doi:10.2307/1913811
[19] Merton, R. C.: The theory of finance from the perspective of continuous time, Journal of financial and quantitative analysis 10, 659-674 (1975)
[20] Nikeghbali, A.; Yor, M.: A definition and some characteristic properties of pseudo-stopping times, Annals of probability 33, No. 5, 1804-1824 (2005) · Zbl 1083.60035 · doi:10.1214/009117905000000297
[21] Richard, S. F.: Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of financial economics 2, 187-203 (1975)
[22] Vasicek, O. A.: An equilibrium characterisation of the term structure, Journal of financial economics 5, 177-188 (1977)
[23] Yaari, M.: Uncertain lifetime, life insurance, and the theory of the consumer, Review of economic studies 2, 137-150 (1965)