zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributed nonlinear control algorithms for network consensus. (English) Zbl 1153.93307
Summary: We develop a thermodynamic framework for addressing consensus problems for nonlinear multiagent dynamical systems with fixed and switching topologies. Specifically, we present distributed nonlinear static and dynamic controller architectures for multiagent coordination. The proposed controller architectures are predicated on system thermodynamic notions resulting in controller architectures involving the exchange of information between agents that guarantee that the closed-loop dynamical network is consistent with basic thermodynamic principles.

93A14Decentralized systems
90B18Communication networks (optimization)
93C10Nonlinear control systems
Full Text: DOI
[1] Bacciotti, A.; Ceragioli, F.: Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESIAM control optimisation calculus variations 4, 361-376 (1999) · Zbl 0927.34034 · doi:10.1051/cocv:1999113 · http://www.edpsciences.org/articles/cocv/abs/1999/01/cocvVol4-13/cocvVol4-13.htm
[2] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences, (1979) · Zbl 0484.15016
[3] Bernstein, D. S.: Matrix mathematics, (2005) · Zbl 1075.15001
[4] Bhat, S.P., & Bernstein, D.S. (1999). Lyapunov analysis of semistability. In Proc. amer. control conf (pp. 1608-1612)
[5] Bhat, S.P., & Bernstein, D.S. (2003a). Arc-length-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. In Proc. amer. control conf (pp. 2961-2966)
[6] Bhat, S. P.; Bernstein, D. S.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibra, SIAM journal on control and optimisation 42, 1745-1775 (2003) · Zbl 1078.34031 · doi:10.1137/S0363012902407119
[7] Chellaboina, V., Haddad, W.M., Hui, Q., & Ramakrishnan, J. (2006). On system state equipartitioning and semistability in network dynamical systems with arbitrary time-delays. In Proc. IEEE conf. decision and control (pp. 3461-3466) · Zbl 1140.93315
[8] Clarke, F. H.: Optimization and nonsmooth analysis, (1983) · Zbl 0582.49001
[9] Cortés, J.; Bullo, F.: Coordination and geometric optimization via distributed dynamical systems, SIAM journal on control and optimisation 44, 1543-1574 (2005) · Zbl 1108.37058 · doi:10.1137/S0363012903428652
[10] Filippov, A. F.: Differential equations with discontinuous right-hand sides, (1988) · Zbl 0664.34001
[11] Haddad, W. M.; Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: A unified analysis framework for biological and physiological systems, Nonlinear analysis: RWA 6, 35-65 (2005) · Zbl 1074.93030 · doi:10.1016/j.nonrwa.2004.01.006
[12] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G.: Thermodynamics: A dynamical systems approach, (2005) · Zbl 1077.80001
[13] Hui, Q., & Haddad, W.M. (2007). Continuous and hybrid distributed control for multiagent systems: Consensus, flocking, and cyclic pursuit. In Proc. amer. control conf (pp. 2576-2581)
[14] Hui, Q., Haddad, W.M., & Bhat, S.P. (2007). Finite-time semistability theory with applications to consensus protocols in dynamical networks. In Proc. amer. control conf (pp. 2411-2416)
[15] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, 988-1001 (2003)
[16] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, 1520-1533 (2004)
[17] Paden, B. E.; Sastry, S. S.: A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators, IEEE transactions on circuit and systems 34, 73-82 (1987) · Zbl 0632.34005 · doi:10.1109/TCS.1987.1086038
[18] Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, 655-661 (2005)
[19] Tanner, H. G.; Jadbabaie, A.; Pappas, G. J.: Flocking in fixed and switching networks, IEEE transactions on automatic control 52, 863-868 (2007)