zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Criteria for global pinning-controllability of complex networks. (English) Zbl 1153.93329
Summary: We study pinning-controllability of networks of coupled dynamical systems. In particular, we study the problem of asymptotically driving a network of coupled identical oscillators onto some desired common reference trajectory by actively controlling only a limited subset of the whole network. The reference trajectory is generated by an exogenous independent oscillator, and pinned nodes are coupled to it through a linear state feedback. We describe the time evolution of the complex dynamical system in terms of the error dynamics. Thereby, we reformulate the pinning-controllability problem as a global asymptotic stability problem. By using Lyapunov-stability theory and algebraic graph theory, we establish tractable sufficient conditions for global pinning-controllability in terms of the network topology, the oscillator dynamics, and the linear state feedback.

93D20Asymptotic stability of control systems
93C10Nonlinear control systems
93D05Lyapunov and other classical stabilities of control systems
93B11System structure simplification
Full Text: DOI
[1] Bai, Z.; Demmel, J.; J., A.; Dongarra, H.; Ruhe; Der Vorst, Van: Templates for the solution of algebraic eigenvalue problems: A practical guide. (2000)
[2] Belykh, V.; Belykh, I.; Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, No. 1--2, 159-187 (2004) · Zbl 1098.82622
[3] Belykh, I.; Belykh, V.; Nevidin, K.; Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13, 165-178 (2003) · Zbl 1080.37525
[4] Belykh, I.; Hasler, M.; Belykh, V.: When symmetrization guarantees synchronization in directed networks. International journal of bifurcation and chaos 17, No. 10, 1-9 (2007) · Zbl 1142.93404
[5] Belykh, I.; Hasler, M.; Lauret, M.; Nijmeijer, H.: Synchronization and graph topology. International journal of bifurcation and chaos 15, No. 11, 3423-3433 (2005) · Zbl 1107.34047
[6] Bernstein, D. S.: Matrix mathematics. (2005) · Zbl 1075.15001
[7] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.: Complex networks: structure and dynamics. Physics reports 424, 175-308 (2006)
[8] Chen, T.; Liu, X.; Lu, W.: Pinning complex networks by a single controller. IEEE transactions on circuits and systems I 54, No. 6, 1317-1326 (2007)
[9] Friedler, M.: Algebraic connectivity of graphs. Czechoslovak mathematical journal 23, No. 98, 298-305 (1973)
[10] Ghosh, A., & Boyd, S. (2006). Growing well-connected graphs, In Proceedings of the 45th IEEE conference on decision and control (pp. 6605--6611)
[11] Godsil, C.; Royle, G.: Algebraic graph theory. (2001) · Zbl 0968.05002
[12] Grigoriev, R.; Cross, M.; Schuste, H.: Pinning control of spatiotemporal chaos. Physical review letters 79, No. 15, 2795-2798 (1997)
[13] Ipsen, I.C.G., & Nadler, B. Refined perturbation bounds for eigenvalues of hermitian and non-hermitian matrices, Samsi Technical Report no. 2007-2 (unpublished)
[14] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[15] Jiang, G. P.; Tang, W. K. S.; Chen, G.: A simple global synchronization criterion for coupled chaotic system. Chaos, solitons & fractals 15, 925-935 (2003) · Zbl 1065.70015
[16] Khalil, H. K.: Nonlinear systems. (2002) · Zbl 1003.34002
[17] Lafferriere, G.; Williams, A.; Caughman, J.; Veerman, J. J. P.: Decentralized control of vehicle formations. Systems & control letters 54, No. 9, 899-910 (2005) · Zbl 1129.93303
[18] Lerescu, A. I.; Contandache, N.; Oancea, S.; Grosu, I.: Collection of master--slave synchronized chaotic systems. Chaos, solitons & fractals 22, 599-604 (2004) · Zbl 1096.93016
[19] Li, R., Duan, Z., & Chen, G. (2007). Cost and effects of pinning control for network synchronization. arXiv:0710.2716v1
[20] Li, X.; Wang, X.; Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE transactions on circuits and systems-I 51, No. 10, 2074-2087 (2004)
[21] Lu, W.: Adaptive dynamical networks via neighborhood information: synchronization and pinning control. Chaos 17, No. 2, 023122 (2007) · Zbl 1159.37366
[22] Rulkov, N. F.: Images of synchronized chaos: experiments with circuits. Chaos 6, 262-279 (1996)
[23] Sorrentino, F.; Di Bernardo, M.; Garofalo, F.; Chen, G.: Controllability of complex networks via pinning. Physical review E 75, 046103 (2007)
[24] Wang, X.; Chen, G.: Pinning control of scale-free dynamical networks. Physica A 310, 521-531 (2002) · Zbl 0995.90008
[25] Wu, C.: Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems. Physics letters A 319, No. 5-6, 495-503 (2003) · Zbl 1029.37018
[26] Xiang, J.; Chen, G.: On the V-stability of complex dynamical networks. Automatica 43, 1049-1057 (2007) · Zbl 05246818