zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Semi-global finite-time observers for nonlinear systems. (English) Zbl 1153.93332
Summary: It is well known that high gain observers exist for single output nonlinear systems that are uniformly observable and globally Lipschitzian. Under the same conditions, we show that these systems admit semi-global and finite-time converging observers. This is achieved with a derivation of a new sufficient condition for local finite-time stability, in conjunction with applications of geometric homogeneity and Lyapunov theories.

93C15Control systems governed by ODE
93C10Nonlinear control systems
Full Text: DOI
[1] Andrieu, V., Praly, L., & Astolfi, A. (2007). Homogeneous observers with dynamic high gains. The 7th IFAC symposium on nonlinear contr. syst. (pp. 325--330)
[2] Bestle, D.; Zeitz, M.: Canonical form observer design for non-linear time-variable systems. International journal of control 38, No. 2, 419-431 (1983) · Zbl 0521.93012
[3] Bhat, S.; Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM journal of control and optimization 38, No. 3, 751-766 (2000) · Zbl 0945.34039
[4] Bhat, S.; Bernstein, D.: Geometric homogeneity with applications to finite-time stability. Mathematics of control, signals, and systems 17, 101-127 (2005) · Zbl 1110.34033
[5] Engel, R.; Kreisselmeier, G.: A continuous-time observer which converges in finite time. IEEE transactions on automatic control 47, No. 7, 1202-1204 (2002)
[6] Gauthier, J. P.; Hammouri, H.; Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE transactions on automatic control 37, No. 6, 875-880 (1992) · Zbl 0775.93020
[7] Gauthier, J. P.; Kupka, I. A. K.: Observability and observers for nonlinear systems. SIAM journal of control and optimization 32, No. 4, 975-994 (1994) · Zbl 0802.93008
[8] Hammouri, H.; Targui, B.; Armanet, F.: High gain observer based on a triangular structure. International journal of robust and nonlinear control 12, No. 6, 497-518 (2002) · Zbl 1006.93007
[9] Haskara, I.; Ozguner, U.; Utkin, V.: On sliding mode observers via equivalent control approach. International journal of control 71, No. 6, 1051-1067 (1998) · Zbl 0938.93505
[10] Hermann, R.; Krener, A. J.: Nonlinear controllability and observability. IEEE transactions on automatic control 22, No. 5, 728-740 (1997) · Zbl 0396.93015
[11] Hong, Y.; Huang, J.; Xu, Y.: On an output feedback finite-time stabilization problem. IEEE transactions on automatic control 46, No. 2, 305-309 (2001) · Zbl 0992.93075
[12] Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Systems & control letters 46, No. 4, 231-236 (2002) · Zbl 0994.93049
[13] Isidori, A.: Nonlinear control systems. (1995) · Zbl 0878.93001
[14] Kazantzis, N.; Kravaris, C.: Nonlinear observer design using Lyapunov’s auxiliary theorem. Systems & control letters 34, No. 5, 241-247 (1998) · Zbl 0909.93002
[15] Kou, S. R.; Elliott, D. L.; Tarn, T. J.: Exponential observers for nonlinear dynamic systems. Information and control 29, 204-216 (1975) · Zbl 0319.93049
[16] Krener, A. J.: Nonlinear stabilizability and detectability. Systems and networks: mathematical theory in nonlinear control theory, 89-98 (1986)
[17] Krener, A. J.; Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM journal of control and optimization 23, No. 2, 197-216 (1985) · Zbl 0569.93035
[18] Krener, A. J.; Isidori, A.: Linearization by output injection and nonlinear observers. Systems & control letters 3, No. 1, 47-52 (1983) · Zbl 0524.93030
[19] Menold, P. H., Findeisen, R., & Allgöwer, F. (2003a). Finite time convergent observers for linear time-varying systems. In Proceedings of the 11th Mediterranean conference on control and automation (T7-078)
[20] Menold, P. H., Findeisen, R., & Allgöwer, F. (2003b). Finite time convergent observers for nonlinear systems. In Proceedings of the 42nd IEEE conference on decision and control (pp. 5673--5678) Vol. 6
[21] Michalska, H.; Mayne, D.: Moving horizon observers and observer-based control. IEEE transactions on automatic control 40, No. 6, 995-1006 (1995) · Zbl 0832.93007
[22] Perruquetti, W.; Floquet, T.; Moulay, E.: Finite time observers and secure communication. IEEE transactions on automatic control 53, No. 1, 356-360 (2008)
[23] Qian, C.; Lin, W.: Non-Lipschitz continuous stabilizer for nonlinear systems with uncontrollable unstable linearization. Systems & control letters 42, No. 3, 185-200 (2001) · Zbl 0974.93050
[24] Qian, C.; Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE transactions on automatic control 46, No. 7, 1061-1079 (2001) · Zbl 1012.93053
[25] Raghavan, S.; Hedrick, J. K.: Observer design for a class of nonlinear systems. International journal control 59, No. 2, 515-528 (1994) · Zbl 0802.93007
[26] Rajamani, R.; Cho, Y.: Existence and design of observers for nonlinear systems: relation to distance to unobservability. International journal control 69, No. 5, 717-731 (1998) · Zbl 0933.93019
[27] Sauvage, F.; Guay, M.; Dochain, D.: Design of a nonlinear finite-time converging observer for a class of nonlinear systems. Journal of control science and engineering 2007, 1-9 (2007) · Zbl 1229.93091
[28] Shim, H.; Son, Y. I.; Seo, J. H.: Semi-global observer for multi-output nonlinear systems. Systems & control letters 42, No. 3, 233-244 (2001) · Zbl 0985.93006
[29] Thau, F. E.: Observing the state of nonlinear dynamic systems. International journal control 17, No. 3, 471-479 (1973) · Zbl 0249.93006
[30] Xia, X. -H.; Gao, W. -B.: On exponential observers for nonlinear systems. Systems & control letters 11, No. 4, 319-325 (1988) · Zbl 0654.93010
[31] Xia, X. -H.; Gao, W. -B.: Nonlinear observer design by observer error linearization. SIAM journal control and optimization 27, No. 1, 199-216 (1989) · Zbl 0667.93014
[32] Xia, X.; Zeitz, M.: On nonlinear continuous observers. International journal of control 66, No. 6, 943-954 (1997) · Zbl 0872.93016
[33] Yoshizawa, T.: Stability theory by Lyapunov’s second method. (1966) · Zbl 0144.10802