Zhang, Hao; Ma, Xikui; Li, Ming; Zou, Jianlong Controlling and tracking hyperchaotic Rössler system via active backstepping design. (English) Zbl 1153.93381 Chaos Solitons Fractals 26, No. 2, 353-361 (2005). Summary: This paper presents a novel active backstepping control approach for controlling hyperchaotic Rössler system to a steady state as well as tracking of any desire trajectory to be achieved in a systematic way. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical results show that the controller is singularity free and the closed-loop system is stable globally. Especially, the main feature of this technique is that it gives the flexibility to construct a control law. Finally, numerical experiments verify the feasibility and effectiveness of the proposed control technique. Cited in 28 Documents MSC: 93B51 Design techniques (robust design, computer-aided design, etc.) 37N35 Dynamical systems in control 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior PDF BibTeX XML Cite \textit{H. Zhang} et al., Chaos Solitons Fractals 26, No. 2, 353--361 (2005; Zbl 1153.93381) Full Text: DOI References: [1] Ott, E., Phys Rev Lett, 64, 1196-1199 (1990) [2] Wu, T.; Chen, M. S., Physica D, 164, 53-58 (2002) [3] Meucci, R., Physica D, 189, 70-80 (2004) [4] Martínez-Zérega, B. E., Phys Lett A, 318, 102-111 (2003) [5] Banerjee, S., IEICE Trans Fundam, E87-A, 2100-2109 (2004) [6] Deane, J. H.B.; Hamill, D. C., Electron Lett, 32, 1045 (1996) [7] Zhang, H., Chaos, Solitons & Fractals, 22, 433-442 (2004) [8] Chen, G. R., Controlling chaos and bifurcations in engineering (1999), CRC Press: CRC Press Boca Raton [9] Colet, P., Phys Lett E, 50, 3453-3457 (1994) [10] Yang, L., Phys Lett E, 84, 67-70 (2000) [11] Bu, S. L., Phys Lett E, 64, 056212 (2001) [12] Oliveira, V. A.; Rosolen, J. R., Phys Lett E, 68, 058201 (2003) [13] Hsieh, J. Y., Int J Control, 71, 882-886 (1999) [14] Jiang, M. J., Chaos, Solitons & Fractals, 14, 1465-1476 (2002) [15] Kokotovic, P. V., IEEE Control Syst Mag, 6, 7-17 (1992) [16] Krstic, M., Nonlinear and adaptive control design (1995), Wiley: Wiley New York [17] Ge, S. S., Int J Bifurc Chaos, 10, 1149-1156 (2000) [18] Barona, K.; Singh, S. N., Int J Bifurc Chaos, 12, 1599-1604 (2002) [19] Mascolo, S.; Grassi, G., Phys Rev E, 56, 6166-6169 (1997) [20] Yu, Y. G.; Zhang, S. C., Chaos, Solitons & Fractals, 15, 897-902 (2003) [21] Lü, J. H.; Zhang, S. C., Phys Lett A, 286, 148-152 (2001) [22] Bai, E. W.; Lonngern, K. E., Chaos, Solitons & Fractals, 8, 51-58 (1997) [23] Bai, E. W.; Lonngern, K. E., Chaos, Solitons & Fractals, 11, 1041-1044 (2000) [24] Zhang, H.; Ma, X. K., Chaos, Solitons & Fractals, 21, 39-47 (2004) [25] Zhang, H., Chaos, Solitons & Fractals, 21, 1249-1257 (2004) [26] Ho, M. C.; Hung, Y. C., Phys Lett A, 301, 424-428 (2002) [27] Rössler, O. E., Phys Lett A, 57, 397-398 (1976) [28] Rössler, O. E., Phys Lett A, 71, 155-157 (1979) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.