[1] |
Delfou, M. C.; Mitter, S. K.: Hereditary differential systems with constant delays, II. A class of affine systems and the adjoint problem. Journal of differential equations 18, 18-28 (1975) · Zbl 0303.34052 |

[2] |
Eller, D. H.; Aggarwal, J. K.; Banks, H. T.: Optimal control of linear time-delay systems. IEEE transactions on automatic control 14, No. 2, 301-305 (1969) |

[3] |
Ji, Y. D.; Chizeck, H. J.: Controllability, stability, and continuous-time Markovian jump linear quadratic control. IEEE transactions on automatic control 35, No. 7, 777-788 (1990) · Zbl 0714.93060 |

[4] |
Lakshmikantham, V.; Leela, S.; Martynyuk, A. A.: Practical stability of nonlinear systems. (1990) · Zbl 0753.34037 |

[5] |
Lasalle, J. P.; Lefschetz, S.: Stability by Liapunovâ€™s direct method with applications. (1961) · Zbl 0098.06102 |

[6] |
Luo, J. W.; Zou, J. Z.; Hou, Z. T.: Comparison principle and stability criteria for stochastic differential delay equations with Markovian switching. Science in China (Series A) 46, No. 1, 129-138 (2003) · Zbl 1217.60046 |

[7] |
Mahmoud, S. M.; Shi, Y.; Nounou, H. N.: Resilient observer-based control of uncertain time-delay systems. International journal of innovative computing, information and control 3, No. 2, 407-418 (2007) |

[8] |
Malek-Zavarei, M.; Jamshidi, M.: Time-delay systems: analysis, optimization and applications. (1987) · Zbl 0658.93001 |

[9] |
Mao, X. R.: Stability of stochastic differential equations with Markovian switching. Stochastic process and their applications 79, 45-67 (1999) · Zbl 0962.60043 |

[10] |
Mao, X. R.: A note on lasalle-type theorems for stochastic differential delay equations. Journal of mathematical analysis and applications 268, 125-142 (2002) · Zbl 0996.60064 |

[11] |
Mariton, M.; Bertrand, P.: Output feedback for a class of linear systems with stochastic jump parameters. IEEE transactions on automatic control 30, No. 9, 898-900 (1985) · Zbl 0576.93069 |

[12] |
Mariton, M.: Jump linear systems in automatic control. (1990) |

[13] |
Martynyuk, A. A.: Methods and problems of practical stability of motion theory. Zagadnienia drgan nieliniowych 22, 19-46 (1984) · Zbl 0569.34046 |

[14] |
Martynyuk, A. A.; Sun, Z. Q.: Practical stability and applications. (2004) · Zbl 1074.93008 |

[15] |
Ross, D. W.; Flugge-Lotz, I.: An optimal control problem for systems with differential-difference equation dynamics. SIAM journal of control 7, No. 4, 609-623 (1969) · Zbl 0186.48601 |

[16] |
Sathananthan, S.; Keel, L. H.: Optimal practical stabilization and controllability of systems with Markovian jumps. Nonlinear systems 54, 1001-1027 (2003) · Zbl 1031.93154 |

[17] |
Shi, P.; Boukas, E. K.: H$\infty $control for Markovian jumping linear systems with parametric uncertainties. Journal of optimization theory and applications 95, No. 1, 75-99 (1997) · Zbl 1026.93504 |

[18] |
Shi, P.; Boukas, E. K.; Agarwal, R.: Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE transactions on automatic control 44, No. 11, 2139-2144 (1999) · Zbl 1078.93575 |

[19] |
You, B. L.: Complemental tutorial for ordinary differential equations. (1981) |

[20] |
Yuan, C. G.; Mao, X. R.: Asymptotic stability in distribution of stochastic differential equations with Markovian swithching. Stochastic process and their applications 103, 277-291 (2003) · Zbl 1075.60541 |

[21] |
Wang, Z. D.; Qiao, H.; Burnham, K. J.: On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters. IEEE transactions on automatic control 47, No. 4, 640-646 (2002) |

[22] |
Wang, Z. D.; Lam, J.; Liu, X. H.: Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances. IEEE transactions on circuits and systems -- part II 51, No. 5, 262-268 (2004) |