×

Arithmetic properties of positive integers with fixed digit sum. (English) Zbl 1154.11032

The author proves 7 propositions about the set \(A_{b,s}\) of all positive integers \(n\) which are not multiples of \(b\) and whose sum of digits in base \(b\) is precisely \(s\). For instance:
Proposition 2: Let \(P(n)\) be the largest prime factor of \(n\). Then for every \(\varepsilon > 0\) there exist infinitely many positive integers \(n\in A_{b,s}\) with \(P(n)< n^{\varepsilon}\);
Propositions 4 and 5: There exist infinitely many positive integers \(n\in A_{b,s}\) for which \(\omega (n)>\exp(\frac{c_{5}\log_{2}n}{\log_{3}n})\) and \(\Omega(n)=o(\log n)\) where \(\omega (n) \) means as usually the number of distinct prime factors of \(n\) ; \(\Omega(n)\) - the same, but counting the multiplicity of the primes, \(c_{5}\) is a positive computable constant depending only on \(b\) and \(s\).
The author proposes the following problem: Prove or disprove that \(\lim_{{n\rightarrow\infty} \atop{n\in A_{b,s}}} \frac{\omega(n)\log_{2}n}{\log n}=0\).

MSC:

11N64 Other results on the distribution of values or the characterization of arithmetic functions
11A63 Radix representation; digital problems
11J86 Linear forms in logarithms; Baker’s method

References:

[1] Baker, A. and Wüstholz, G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19-62. · Zbl 0788.11026 · doi:10.1515/crll.1993.442.19
[2] Balog, A. and Wooley, T.: On strings of consecutive integers with no large prime factors. J. Austral Math. Soc. Ser. A 64 (1998), 266-276. · Zbl 0942.11041
[3] Banks, W. and Shparlinski, I. E.: Arithmetic properties of numbers with restricted digits. Acta Arith. 112 (2004), 313-332. · Zbl 1049.11003 · doi:10.4064/aa112-4-1
[4] Bugeaud, Y.: Lower bounds for the greatest prime factor of \(ax^m+by^n\). Acta. Math. Inform. Univ. Ostraviensis 6 (1998), 53-57. · Zbl 1024.11019
[5] Carmichael, R. D.: On the numerical factors of the arithmetic forms \(\alpha^n\pm \beta^n\). Ann. of Math. (2) 15 (1913), 30-70. · JFM 44.0216.01 · doi:10.2307/1967797
[6] Corvaja, P. and Zannier, U.: Diophantine equations with power sums and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317-332. · Zbl 0923.11103 · doi:10.1016/S0019-3577(98)80001-3
[7] Dartyge, C. and Mauduit, C.: Nombres presque premiers dont l’écriture en base \(r\) ne comporte pas certaines chiffres. J. Number Theory 81 (2000), 270-291. · Zbl 0957.11039 · doi:10.1006/jnth.1999.2458
[8] De Bruijn, N. G.: On the number of positive integers \(\leq x\) and free of prime factors \(&gt;y\). Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60. · Zbl 0042.04204
[9] Eggleton, R. B. and Selfridge, J. L.: Consecutive integers with no large prime factors. J. Austral. Math. Soc. Ser. A 22 (1976), 1-11. · Zbl 0343.10024 · doi:10.1017/S1446788700013318
[10] Fouvry, E. and Mauduit, C.: Methódes de crible et fonctions sommes des chiffres. Acta Arith. 77 (1996), 339-351. · Zbl 0869.11073
[11] Fouvry, E. and Mauduit, C.: Sommes des chiffres et nombres presque premiers. Math. Ann. 305 (1996), 571-599. · Zbl 0858.11050 · doi:10.1007/BF01444238
[12] Konyagin, S., Mauduit, C. and Sárközy, A.: On the number of prime factors of integers characterized by digit properties. Period. Math. Hungar. 40 (2000), 37-52. · Zbl 0963.11005 · doi:10.1023/A:1004887821978
[13] Luca, F.: The number of non zero digits of \(n!\). Canad. Math. Bull. 45 (2002), 115-118. · Zbl 1043.11008 · doi:10.4153/CMB-2002-013-9
[14] Luca, F.: How smooth is \(\phi(2^n+3)\)? Rocky Mountain J. Math. 34 (2004), 1367-1389. · Zbl 1063.11031 · doi:10.1216/rmjm/1181069806
[15] Mauduit, C. and Sárközy, A.: On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61 (1996), 25-38. · Zbl 0868.11004 · doi:10.1006/jnth.1996.0134
[16] Mauduit, C. and Sárközy, A.: On the arithmetic structure of the integers whose sum of digits is fixed. Acta Arith. 81 (1997), 145-173. · Zbl 0887.11008
[17] Nicolas, J.-L.: Petites valeurs de la fonction d’Euler. J. Number Theory 17 (1983), 375-388. · Zbl 0521.10039 · doi:10.1016/0022-314X(83)90055-0
[18] Rosser, J. B. and Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962) 64-94. · Zbl 0122.05001
[19] Schlickewei, H. P.: \(S\)-unit equations over number fields. Invent. Math. 102 (1990), no. 1, 95-107. · Zbl 0711.11017 · doi:10.1007/BF01233421
[20] Schmidt, W. M.: Diophantine approximations and Diophantine equations . Lecture Notes in Mathematics 1467 . Springer-Verlag, Berlin, 1991. · Zbl 0754.11020 · doi:10.1007/BFb0098246
[21] Senge, H. G. and Strauss, E. G.: \(PV\)-numbers and sets of multiplicity. Period. Math. Hungar. 3 (1973), 93-100. · Zbl 0248.12004 · doi:10.1007/BF02018464
[22] Shparlinski, I. E.: Prime divisors of sparse integers. Period. Math. Hungar. 46 (2003), no. 2, 215-222. · Zbl 1049.11010 · doi:10.1023/A:1025996312037
[23] Stewart, C. L.: On the representation of an integer in two different bases. J. Reine Angew. Math. 319 (1980), 63-72. · Zbl 0426.10008 · doi:10.1515/crll.1980.319.63
[24] Szalay, L.: The equations \(2^n\pm 2^m\pm 2^l=z^2\). Indag. Math. (N.S.) 13 (2002), 131-142. · Zbl 1014.11022 · doi:10.1016/S0019-3577(02)90011-X
[25] Yu, K.: \(p\)-adic logarithmic forms and group varieties. II. Acta Arith. 89 (1999), no. 4, 337-378. · Zbl 0928.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.