×

zbMATH — the first resource for mathematics

Twisted descent algebras and the Solomon-Tits algebra. (English) Zbl 1154.16029
Summary: The notion of descent algebra of a bialgebra is lifted to the Barratt-Joyal setting of twisted bialgebras. The new twisted descent algebras share many properties with their classical counterparts. For example, there are twisted analogs of classical Lie idempotents and of the peak algebra. Moreover, the universal twisted descent algebra is equipped with two products and a coproduct, and there is a fundamental rule linking all three. This algebra is shown to be naturally related to the geometry of the Coxeter complex of type \(A\).

MSC:
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
05E10 Combinatorial aspects of representation theory
20C08 Hecke algebras and their representations
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aguiar, M.; Bergeron, N.; Nyman, K., The peak algebra and the descent algebras of types B and D, Trans. amer. math. soc., 356, 2781-2824, (2004) · Zbl 1043.05115
[2] M.G. Barratt, Twisted Lie algebras. Geometry Applications Homotopy Theory II, Proceedings of the Conference, Evanston 1977; Lecture Notes in Mathematics, vol. 658, Springer, Berlin, 1978, pp. 9-15.
[3] Bergeron, N.; Hivert, F.; Thibon, J.-Y., The peak algebra and the Hecke-Clifford algebras at \(q = 0\), J. combin. theory A, 117, 1-19, (2004) · Zbl 1107.05092
[4] Bergeron, N.; Mykytiuk, S.; Sottile, F.; van Willigenburg, S., Shifted quasisymmetric functions and the Hopf algebra of peak functions, Discrete math., 246, 57-66, (2002) · Zbl 0996.05117
[5] P. Bidigare, Hyperplane arrangement face algebras and their associated Markov chains, Ph.D. Thesis, University of Michigan, 1997.
[6] Bidigare, P.; Hanlon, P.; Rockmore, D., A combinatorial description of the spectrum for the tsetlin library and its generalization to hyperplane arrangements, Duke math. J., 99, 1, 135-174, (1999) · Zbl 0955.60043
[7] Billera, L.J.; Hsiao, S.K.; van Willigenburg, S., Peak quasisymmetric functions and Eulerian enumeration, Adv. math., 176, 2, 248-276, (2003) · Zbl 1027.05105
[8] Broadhurst, D.; Kreimer, D., Combinatoric explosion of renormalization tamed by Hopf algebra: 30-loop Padé-Borel resummation, Phys. lett. B, 475, 1-2, 63-70, (2000) · Zbl 1049.81569
[9] Brouder, Ch., On the trees of quantum fields, Eur. phys. J. C, 12, 535-549, (2000)
[10] Brouder, Ch.; Frabetti, A., Renormalization of QED with planar binary trees, Euro. phys. J. C, 19, 715-741, (2001) · Zbl 1099.81568
[11] Brown, K.S., Semigroups, rings, and Markov chains, J. theoret. probab., 13, 3, 871-938, (2000) · Zbl 0980.60014
[12] K.-T. Chen, Collected papers of K.-T. Chen, Edited and with a preface by Philippe Tondeur, and an essay on Chen’s life and work by Richard Hain and Tondeur, Contemporary Mathematicians, Birkhäuser, Boston, MA, 2001.
[13] Collins, J.C., Renormalization: an introduction to renormalization, the renormalization group, and the operator-product expansion, Cambridge monographs on mathematical physics, (1984), Cambridge University Press Cambridge
[14] Connes, A.; Kreimer, D., Hopf algebras, renormalization and non-commutative geometry, Comm. math. phys., 199, 1, 203-242, (1998) · Zbl 0932.16038
[15] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem, I: the Hopf algebra structure of graphs and the main theorem, Comm. math. phys., 210, 1, 249-273, (2000) · Zbl 1032.81026
[16] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem, II: the \(\beta\)-function, diffeomorphisms and the renormalization group, Comm. math. phys., 216, 1, 215-241, (2001) · Zbl 1042.81059
[17] A. Dold, Lectures on Algebraic Topology, second ed., Grundlehren der Mathematischen Wissenschaften 200, Springer, Berlin, Heidelberg, New York, 1980. · Zbl 0434.55001
[18] Gelfand, I.M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. math., 112, 2, 218-348, (1995) · Zbl 0831.05063
[19] Humphreys, J., Reflexion groups and Coxeter groups, (1990), Cambridge University Press Cambridge
[20] A. Joyal, Foncteurs analytiques et espèces de structures, Combinatoire énumérative, Proceedings of the Colloquium, Montréal, Canada, 1985; Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, 1986, pp. 126-159.
[21] Krob, D.; Leclerc, B.; Thibon, J.-Y., Noncommutative symmetric functions II: transformations of alphabets, Internat. J. algebra comput., 7, 2, 181-264, (1997) · Zbl 0907.05055
[22] Loday, J.-L.; Ronco, M., Hopf algebra of the planar binary trees, Adv. math., 139, 2, 293-309, (1998) · Zbl 0926.16032
[23] Macdonald, I.G., Symmetric functions and Hall polynomials, (1995), Clarendon Press Oxford · Zbl 0487.20007
[24] Malvenuto, C.; Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. algebra, 177, 3, 967-982, (1995) · Zbl 0838.05100
[25] Nyman, K., The peak algebra of the symmetric group, J. algebraic combin., 17, 3, 309-322, (1997) · Zbl 1021.06003
[26] Patras, F., La décomposition en poids des algèbres de Hopf, Ann. inst. Fourier, 43, 4, 1067-1087, (1993) · Zbl 0795.16028
[27] Patras, F., L’algèbre des descentes d’une bigèbre graduée, J. algebra, 170, 2, 547-566, (1994) · Zbl 0819.16033
[28] Patras, F., Adams operations, iterated integrals and free loop spaces cohomology, J. pure appl. algebra, 114, 273-286, (1997) · Zbl 0878.55004
[29] Patras, F., Adams operations, algebras up to homotopy and cyclic homology, Topology, 39, 6, 1089-1101, (2000) · Zbl 0967.19002
[30] F. Patras, Lambda-rings, Handbook of Algebra, vol. 3, North-Holland, Amsterdam, 2003, pp. 961-986. · Zbl 1072.19005
[31] Patras, F.; Reutenauer, C., Lie representations and an algebra containing Solomon’s, J. algebraic combin., 16, 301-314, (2002) · Zbl 1056.16032
[32] Patras, F.; Reutenauer, C., On Dynkin and klyachko idempotents in graded bialgebras, Adv. appl. math., 28, 3-4, 560-579, (2002) · Zbl 1024.16021
[33] Patras, F.; Reutenauer, C., On descent algebras and twisted bialgebras, Moscow math. J., 4, 1, 199-216, (2004) · Zbl 1103.16026
[34] Racinet, G., Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. math. inst. hautes études sci., 95, 185-231, (2002) · Zbl 1050.11066
[35] Reutenauer, C., Free Lie algebras, (1993), Oxford University Press Oxford · Zbl 0798.17001
[36] Schocker, M., The descent algebra of the symmetric group, Fields inst. comm., 40, 145-161, (2004) · Zbl 1072.20004
[37] Schocker, M., The peak algebra of the symmetric group revisited, Adv. math., 192, 2, 259-309, (2005) · Zbl 1132.20009
[38] M. Schocker, Module structure of the Tits algebra of the symmetric group, Preprint. · Zbl 1155.20012
[39] Solomon, L., A MacKey formula in the group algebra of a finite Coxeter group, J. algebra, 41, 255-268, (1976) · Zbl 0355.20007
[40] Stembridge, J.R., Enriched \(P\)-partitions, Trans. amer. math. soc., 349, 2, 763-788, (1997) · Zbl 0863.06005
[41] Stover, C.R., The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. pure appl. algebra, 86, 3, 289-326, (1993) · Zbl 0793.16016
[42] Tits, J., Two properties of Coxeter complexes, appendix to: L. Solomon. A MacKey formula in the group algebra of a finite Coxeter group, J. algebra, 41, 255-268, (1976)
[43] Tits, J., Buildings of spherical type and finite \(\mathit{BN}\)-pairs, (1974), Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.