An analogue of the Löwner equation for mappings of strips. (English. Russian original) Zbl 1154.30008

Russ. Math. 51, No. 8, 74-77 (2007); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007, No. 8, 77-80 (2007).
An analogue of the Löwner equation for conformal mappings, defined on a strip, with finite angular derivatives the the infinite points is obtained.


30C35 General theory of conformal mappings
30C55 General theory of univalent and multivalent functions of one complex variable
Full Text: DOI


[1] K. Löwner, ”Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann. 89, 103–121 (1923). · JFM 49.0714.01
[2] V. V. Goryainov, ”Semigroups of Conformal Mappings,” Matem. Sborn. 129(4), 451–472 (1986). · Zbl 0609.30009
[3] S. Rohde and O. Schramm, ”Basic Properties of SLE,” Ann. Math. 161(2), 879–920 (2005). · Zbl 1081.60069
[4] P. L. Duren, Univalent Functions (Springer-Verlag, New York, 1983).
[5] V. V. Goryainov, ”Fractional Iterations of Analytic in the Unit Disc Functions with Given Fixed Points,” Matem. Sborn. 182(9), 1281–1299 (1991). · Zbl 0741.30019
[6] M. A. Lavrent’ev and B. V. Shabat, Methods of Theory of Functions of Complex Variable (Nauka, Moscow, 1973) [in Russian].
[7] N. Dunford and J. T. Schwartz, Linear Operators. General Theory (Interscience Publishers, New York, London, 1958; Inostr. Lit., Moscow, 1962).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.