zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$h$-stability of dynamic equations on time scales with nonregressivity. (English) Zbl 1154.34023
Summary: We study the $h$-stability of dynamic equations on time scales, without the regressivity condition on the right-hand side of dynamic equations. This means that we can include noninvertible difference equations into our results.

MSC:
34D20Stability of ODE
34A30Linear ODE and systems, general
39A10Additive difference equations
WorldCat.org
Full Text: DOI EuDML
References:
[1] S. Hilger, “Analysis on measure chains-a unified approach to continuous and discrete calculus,” Results in Mathematics, vol. 18, no. 1-2, pp. 18-56, 1990. · Zbl 0722.39001 · doi:10.1007/BF03323153
[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA, 2001. · Zbl 0978.39001
[3] S. K. Choi, N. J. Koo, and D. M. Im, “h-stability for linear dynamic equations on time scales,” Journal of Mathematical Analysis and Applications, vol. 324, no. 1, pp. 707-720, 2006. · Zbl 1112.34031 · doi:10.1016/j.jmaa.2005.12.046
[4] M. Pinto, “Perturbations of asymptotically stable differential systems,” Analysis, vol. 4, no. 1-2, pp. 161-175, 1984. · Zbl 0568.34035
[5] S. K. Choi and N. J. Koo, “Variationally stable difference systems by n\infty -similarity,” Journal of Mathematical Analysis and Applications, vol. 249, no. 2, pp. 553-568, 2000. · Zbl 0965.39001 · doi:10.1006/jmaa.2000.6910
[6] S. K. Choi, N. J. Koo, and H. S. Ryu, “h-stability of differential systems via t\infty -similarity,” Bulletin of the Korean Mathematical Society, vol. 34, no. 3, pp. 371-383, 1997. · Zbl 0891.34059
[7] M. Pinto, “Integral inequalities of Bihari-type and applications,” Funkcialaj Ekvacioj, vol. 33, no. 3, pp. 387-403, 1990. · Zbl 0717.45004
[8] R. J. Marks II, I. A. Gravagne, J. M. Davis, and J. J. DaCunha, “Nonregressivity in switched linear circuits and mechanical systems,” Mathematical and Computer Modelling, vol. 43, no. 11-12, pp. 1383-1392, 2006. · Zbl 1136.93379 · doi:10.1016/j.mcm.2005.08.007
[9] R. Agarwal, M. Bohner, D. O’Regan, and A. Peterson, “Dynamic equations on time scales: a survey,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 1-26, 2002. · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[10] V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, Dynamic Equations on Measure Chains, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. · Zbl 0869.34039
[11] C. Pötzsche, Langsame Faserbünder dynamischer Gleichungen auf Maßketten, Ph.D. thesis, Universität Augsburg, Augsburg, Germany, 2002.
[12] J. J. DaCunha, “Stability for time varying linear dynamic systems on time scales,” Journal of Computational and Applied Mathematics, vol. 176, no. 2, pp. 381-410, 2005. · Zbl 1064.39005 · doi:10.1016/j.cam.2004.07.026
[13] R. Agarwal, M. Bohner, and A. Peterson, “Inequalities on time scales: a survey,” Mathematical Inequalities & Applications, vol. 4, no. 4, pp. 535-557, 2001. · Zbl 1021.34005
[14] S. K. Choi and N. J. Koo, “h-stability for nonlinear perturbed systems,” Annals of Differential Equations, vol. 11, no. 1, pp. 1-9, 1995. · Zbl 0841.34055