zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new stability analysis of delayed cellular neural networks. (English) Zbl 1154.34386
Summary: The global asymptotic stability of delayed cellular neural networks (DCNNs) is investigated. A novel criterion for the stability using the Lyapunov stability theory and linear matrix inequality (LMI) framework is presented. The criterion expressed by LMIs is delay-dependent. The result is less conservative than those established in the earlier references. A numerical example is given to show the effectiveness of proposed method.

34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
LMI toolbox
Full Text: DOI
[1] Chua, L.; Yang, L.: Cellular neural networks: theory and applications. IEEE trans. Circ. syst. I 35, 1257-1290 (1988) · Zbl 0663.94022
[2] Ramesh, M.; Narayanan, S.: Chaos control of bonhoeffer-van der Pol oscillator using neural networks. Chaos solitons fract. 12, 2395-2405 (2001) · Zbl 1004.37067
[3] Chen, C. J.; Liao, T. L.; Hwang, C. C.: Exponential synchronization of a class of chaotic neural networks. Chaos solitons fract. 24, 197-206 (2005) · Zbl 1060.93519
[4] Otawara, K.; Fan, L. T.; Tsutsumi, A.; Yano, T.; Kuramoto, K.; Yoshida, K.: An artificial neural network as a model for chaotic behavior of a three-phase fluidized bed. Chaos solitons fract. 13, 353-362 (2002) · Zbl 1073.76656
[5] Cannas, B.; Cincotti, S.; Marchesi, M.; Pilo, F.: Learning of Chua’s circuit attractors by locally recurrent neural networks. Chaos solitons fract. 12, 2109-2115 (2001) · Zbl 0981.68135
[6] Cao, J.: Global asymptotic stability of neural networks with transmission delays. Int. J. Syst. sci. 31, 1313-1316 (2000) · Zbl 1080.93517
[7] Chen, A.; Cao, J.; Huang, L.: An estimation of upperbound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE trans. Circ. syst. I 49, 1028-1032 (2002)
[8] Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE trans. Circ. syst. Part I: fundam. Theory appl. 47, 571-574 (2000) · Zbl 0997.90095
[9] Liao, T. L.; Wang, F. C.: Global stability for cellular neural networks with time delay. IEEE trans. Neural network 11, 1481-1484 (2000)
[10] Cao, J.: Global stability conditions for delayed cnns. IEEE trans. Circ. syst. I 48, 1330-1333 (2001) · Zbl 1006.34070
[11] Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks. IEEE trans. Neural network 13, 1239-1242 (2002)
[12] Arik, S.: An improved global stability result for delayed cellular neural networks. IEEE trans. Circ. syst. I 49, 1211-1214 (2002)
[13] Singh, V.: Robust stability of cellular neural networks with delay: linear matrix inequality approach. IEEE proc. Control theory appl. 151, 125-129 (2004)
[14] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[15] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. (1995)
[16] K. Gu, An integral inequality in the stability problem of time-delay systems. In: Proc. IEEE CDC, Australia, 2000, pp. 2805 -- 2810.
[17] Yue, D.; Won, S.: Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties. Elect. lett. 37, 992-993 (2001) · Zbl 1190.93095
[18] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002