# zbMATH — the first resource for mathematics

Convergence to equilibrium for a parabolic-hyperbolic phase-field system with dynamical boundary condition. (English) Zbl 1154.35329
Summary: This paper is concerned with the well-posedness and the asymptotic behavior of solutions to the following parabolic-hyperbolic phase-field system
$\begin{cases}(\theta+\chi)_t -\Delta \theta = 0\\ \chi_{tt}+\chi_t -\Delta_{\chi}+ \varphi(\chi)-\theta = 0\end{cases}\tag{1}$ in $$\Omega \times (0,+\infty)$$, subject to the Neumann boundary condition for $$\theta$$ $\partial_{\nu}\theta = 0, \quad \text{on } \Gamma \times (0, +\infty)\tag{2}$ the dynamical boundary condition for $$\chi$$
$\partial_{\nu}\chi + \chi +\chi_t=0,\quad \text{on } \Gamma \times (0,+\infty)\tag{3}$ and the initial
$\theta(0)=\theta_0, \quad \chi(0)=\chi_0,\quad \chi_t(0)=\chi_1,\quad \text{in } \Omega,\tag{4}$ where $$\Omega$$ is a bounded domain in $$\mathbb R^3$$ with smooth boundary $$\Gamma , \nu$$ is the outward normal direction to the boundary and $$\varphi$$ is a real analytic function. In this paper we first establish the existence and uniqueness of a global strong solution to $$(1)--(4)$$. Then, we prove its convergence to an equilibrium as time goes to infinity and we provide an estimate of the convergence rate.

##### MSC:
 35G30 Boundary value problems for nonlinear higher-order PDEs 35K55 Nonlinear parabolic equations 35L70 Second-order nonlinear hyperbolic equations 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 35B40 Asymptotic behavior of solutions to PDEs
Full Text:
##### References:
  Aizicovici, S.; Feireisl, E.; Issard-Roch, F., Long time convergence of solutions to a phase-field system, Math. methods appl. sci., 24, 277-287, (2001) · Zbl 0984.35026  Aizicovici, S.; Petzeltová, H., Convergence of solutions of phase-field systems with a nonconstant latent heat, Dynam. systems appl., 14, 163-173, (2005) · Zbl 1076.35018  Bates, P.; Zheng, S., Inertial manifolds and inertial sets for the phase-field equations, J. dynam. differential equations, 4, 375-398, (1992) · Zbl 0758.35040  Brochet, D.; Hilhorst, D.; Chen, X., Finite-dimensional exponential attractor for the phase field model, Appl. anal., 49, 197-212, (1993) · Zbl 0790.35052  Brokate, M.; Sprekels, J., Hysteresis and phase transitions, (1996), Springer New York · Zbl 0951.74002  Caginalp, G., An analysis of a phase field model of a free boundary, Arch. ration. mech. anal., 92, 205-245, (1986) · Zbl 0608.35080  Chill, R., On the łojasiewicz – simon gradient inequality, J. funct. anal., 201, 572-601, (2003) · Zbl 1036.26015  Chill, R.; Jendoubi, M.A., Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear anal., 53, 1017-1039, (2003) · Zbl 1033.34066  Chueshov, I.; Eller, M.; Lasiecka, I., On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. partial differential equations, 27, 1901-1951, (2002) · Zbl 1021.35020  Elliott, C.; Zheng, S., Global existence and stability of solution to the phase field equations, (), 45-58  Feireisl, E.; Issard-Roch, F.; Petzeltová, H., Long-time behaviour and convergence towards equilibria for conserved phase field model, Discrete contin. dyn. syst., 10, 230-252, (2004) · Zbl 1060.35018  Feireisl, E.; Issard-Roch, F.; Petzeltová, H., A non-smooth version of the łojasiewicz – simon theorem with applications to non-local phase-field systems, J. differential equations, 199, 1-21, (2004) · Zbl 1062.35152  Feireisl, E.; Simondon, F., Convergence for semilinear degenerate parabolic equations in several space dimensions, J. dynam. differential equations, 12, 647-673, (2000) · Zbl 0977.35069  Galenko, P.; Jou, D., Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. rev. E, 71, 046125(13), (2005)  Grasselli, M.; Pata, V., Existence of a universal attractor for a parabolic – hyperbolic phase-field systems, Adv. math. sci. appl., 13, 443-459, (2003) · Zbl 1057.37068  Grasselli, M.; Pata, V., Asymptotic behavior of a parabolic – hyperbolic system, Comm. pure appl. anal., 3, 849-881, (2004) · Zbl 1079.35022  Grasselli, M.; Petzeltová, H.; Schimperna, G., Long time behavior of solutions to the Caginalp system with singular potential, Z. anal. anwendungen, 25, 51-72, (2006) · Zbl 1128.35021  M. Grasselli, H. Petzeltová, G. Schimperna, Convergence to stationary solutions for a parabolic – hyperbolic phase-field system, Comm. Pure Appl. Anal., in press  Greenberg, J.M., Elastic phase transitions: A new model, Phys. D, 108, 209-235, (1997) · Zbl 0963.74547  Haraux, A.; Jendoubi, M.A., Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. var. partial differential equations, 9, 95-124, (1999) · Zbl 0939.35122  Haraux, A., Systèmes dynamiques dissipatifs et applications, (1991), Masson Paris · Zbl 0726.58001  Huang, S.Z.; Takáč, P., Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear anal., 46, 675-698, (2001) · Zbl 1002.35022  Jendoubi, M.A., A simple unified approach to some convergence theorem of L. Simon, J. funct. anal., 153, 187-202, (1998) · Zbl 0895.35012  Jendoubi, M.A., Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. differential equations, 144, 302-312, (1998) · Zbl 0912.35028  Jiménez-Casas, A.; Rodríguez-Bernal, A., Asymptotic behaviour for a phase field model in higher order Sobolev spaces, Rev. mat. complut., 15, 213-248, (2002) · Zbl 1009.35011  Kalantarov, V.K., On the minimal global attractor of a system of phase field equations, Kraev. zadachi mat. fiz. i smezh. voprosy teor. funktsii, Zap. nauchn. sem. leningrad. otdel. mat. inst. Steklov. (LOMI), J. math. sci., 70, 3, 1767-1777, (1994), (in Russian); translation in · Zbl 0835.35158  Laurençot, Ph., Long-time behaviour for a model of phase-field type, Proc. roy. soc. Edinburgh sect. A, 126, 167-185, (1996) · Zbl 0851.35055  Li, W., Long-time convergence of solution to phase-field system with Neumann boundary conditions, Chinese ann. math. ser. A, 26, 659-668, (2005), (in Chinese) · Zbl 1090.35037  Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications. vol. I, (1973), Springer New York · Zbl 0251.35001  Łojasiewicz, S., Une propriété topologique des sous-ensembles analytiques réels, (), 87-89  Łojasiewicz, S., Sur la geometrie semi- et sous-analytique, Ann. inst. Fourier (Grenoble), 43, 1575-1595, (1963) · Zbl 0803.32002  Łojasiewicz, S., Ensembles semi-analytiques. notes, (1965), I.H.E.S. Bures-sur-Yvette  Matano, H., Convergence of solutions of one-dimensional semilinear parabolic equations, J. math. Kyoto univ., 18, 221-227, (1978) · Zbl 0387.35008  Mironescu, P.; Rădulescu, V., Nonlinear sturm – liouville type problems with a finite number of solutions, (), 54-67  Nirenberg, L., Topics in nonlinear functional analysis, (1974), Courant Institute of Mathematical Science New York University, New York · Zbl 0286.47037  Polačik, P.; Rybakowski, K.P., Nonconvergent bounded trajectories in semilinear heat equations, J. differential equations, 124, 472-494, (1996) · Zbl 0845.35054  Polačik, P.; Simondon, F., Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains, J. differential equations, 186, 586-610, (2002) · Zbl 1024.35046  Rybka, P.; Hoffmann, K.-H., Convergence of solutions to cahn – hilliard equation, Comm. partial differential equations, 24, 1055-1077, (1999) · Zbl 0936.35032  Simon, L., Asymptotics for a class of non-linear evolution equation with applications to geometric problems, Ann. of math., 118, 525-571, (1983) · Zbl 0549.35071  Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, (1988), Springer New York · Zbl 0662.35001  Webb, G.F., Compactness of bounded trajectories of dynamical systems in infinite dimensional space, Proc. roy. soc. Edinburgh sect. A, 84, 19-34, (1979) · Zbl 0414.34042  H. Wu, M. Grasselli, S. Zheng, Convergence to equilibrium for a parabolic – hyperbolic phase-field system with Neumann boundary conditions. Math. Models Methods Appl. Sci., in press · Zbl 1120.35024  Wu, H.; Zheng, S., Convergence to equilibrium for the cahn – hilliard equation with dynamic boundary conditions, J. differential equations, 204, 511-531, (2004) · Zbl 1068.35018  Wu, H.; Zheng, S., Convergence to equilibrium for the damped semilinear wave equation with critical exponent and dissipative boundary condition, Quart. appl. math., 64, 167-188, (2006) · Zbl 1120.35025  Zeidler, E., Nonlinear functional analysis and its applications. I. fixed-point theorems, (1986), Springer New York  Zelenyak, T.I., Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differ. uravn., 4, 34-45, (1968)  Zhang, Z., Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. pure appl. anal., 4, 683-693, (2005) · Zbl 1082.35033  Zheng, S., Nonlinear evolution equations, Pitman ser. monogr. and surv. on pure and appl. math., vol. 133, (2004), Chapman & Hall/CRC Boca Raton, FL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.