zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of solution of Kuramoto-Sivashinsky-Korteweg-de Vries system. (English) Zbl 1154.35441
Summary: A model consisting of a mixed Kuramoto-Sivashinsky-Korteweg-de Vries equation, linearly coupled to an extra linear dissipative equation was proposed in [{\it B. A. Malomed, B.-F. Feng} and {\it T. Kawahara}, Stabilized Kuramoto-Sivashinsky system, Phys. Rev. E 64, 046304 (2001)] in order to describe the surface waves on multilayered liquid films, and stability criteria were discussed using wave mode analysis. In this paper, we study the linear stability of solutions to the model from the viewpoint of the energy estimate.

35Q53KdV-like (Korteweg-de Vries) equations
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B25Solitary waves (inviscid fluids)
Full Text: DOI
[1] Malomed, B. A.; Feng, B. -F.; Kawahara, T.: Stabilized Kuramoto-Sivashinsky system. Phys. rev. E 64 (2001) · Zbl 1006.76015
[2] Jeffrey, A.; Kakutani, T.: Weakly nonlinear dispersive waves: A discussion centered aroud the kortewegdevries equation. SIAM rev. 14, 582 (1972)
[3] Larkin, N. A.: Korteweg-de Vries equation in bounded domains. Bol. soc. Paran. mat. 22, 30 (2001) · Zbl 1064.35168
[4] Miura, R. M.: The Korteweg-de Vries equation: A survey of results. SIAM rev. 18, 412 (1976) · Zbl 0333.35021
[5] Marchant, T. R.; Smyth, N. F.: The initial-boundary problem for the Korteweg-de Vries equation on the negative quarter-plane. Proc. R. Soc. lond. A 458, 1 (2002) · Zbl 0997.35079
[6] Bate, P. W.; Fife, P. C.; Ren, X.; Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. ration. Mech. anal. 138, 105-136 (1997) · Zbl 0889.45012
[7] Ermentrout, G. B.; Mcleod, J. B.: Existence and uniqueness of traveling waves for a neural network. Proc. roy. Soc. Edinburgh sect. A 123, 461-478 (1993) · Zbl 0797.35072
[8] Gershuni, G. Z.; Zhukhovitsky, E. M.; Nepomnyashchy, A. A.: Stability of convective flows. (1989)
[9] Hobbs, A. K.; Metzener, P.: Dynamical patterns in directional solidification. Physica D 93 (1996) · Zbl 0900.76698
[10] Nepomnyashchy, A. A.; Zhidk, M.: Gaza. 3, 28 (1974)
[11] Sivashinsky, G. I.: Nonlinear analysis of hydrodynamic instability in laminar flames. I. derivation of basic equations. Acta astronaut. 4, 1177 (1977) · Zbl 0427.76047
[12] Yamada, T.; Kuramoto, Y.: A reduced model showing chemical turbulence. Prog. theor. Phys. 56, 681 (1976)
[13] Benney, D. J.: Long waves on liquid films. J. math. Phys. 45, 150 (1966) · Zbl 0148.23003
[14] Christov, C. I.; Velarde, M. G.: Dissipative solitons. Physica D 86, 323 (1995) · Zbl 0885.35108
[15] Elphick, C.; Ierley, G. R.; Regev, O.; Spiegel, E. A.: Interacting localized structures with Galilean invariance. Phys. rev. A 44, 1110 (1991)
[16] Oron, A.; Edwards, D. A.: Stability of a falling liquid film in the presence of interfacial viscous stress. Phys. fluids 5, 506 (1993) · Zbl 0767.76021
[17] Chang, H. -C.; Demekhin, E. A.; Kopelevich, D. I.: Stability of a solitary pulse against wave packet disturbances in an active medium. Phys. rev. Lett. 75, 1747 (1995)
[18] Chang, H. -C.: Travelling waves on fluid interfaces: normal form analysis of the Kuramoto-Sivashinsky equation. Phys. fluids 29, 3142 (1986) · Zbl 0602.76043
[19] Toh, S.; Kawahara, T.: On the stability of soliton-like pulses in a nonlinear dispersive system with instability and dissipation. J. phys. Soc. jpn. 54, 1257 (1985)
[20] Gear, J. A.; Grimshawde, R.: Weak and strong interactions between internal solitary waves. Stud. appl. Math. 70, 235 (1984) · Zbl 0548.76020
[21] Feng, B. -F.; Malomed, B. A.; Kawahara, T.: Stable periodic waves in coupled Kuramoto-sivashinskykorteweg-de Vries equations. J. phys. Soc. jpn. 71, 2700 (2002)
[22] Evans, L. C.: Partial differential equations. (1998) · Zbl 0902.35002