×

Binary nonlinearization of the super AKNS system. (English) Zbl 1154.37364

Summary: We establish the binary nonlinearization approach of the spectral problem of the super AKNS system, and then use it to obtain the super finite-dimensional integrable Hamiltonian system in the supersymmetry manifold \(\mathbb R^{4N|2N}\). The super Hamiltonian forms and integrals of motion are given explicitly.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Cao C. W., Sci. China A 33 pp 528–
[2] DOI: 10.1063/1.529156 · Zbl 0737.35083
[3] DOI: 10.1063/1.2424554 · Zbl 1121.35127
[4] DOI: 10.1016/0375-9601(94)90616-5
[5] DOI: 10.1016/0378-4371(95)00161-Y
[6] DOI: 10.1016/0375-9601(91)90402-T
[7] DOI: 10.1016/0375-9601(91)90403-U
[8] DOI: 10.1063/1.529875 · Zbl 0761.35101
[9] DOI: 10.1007/BF02098018 · Zbl 0793.35095
[10] DOI: 10.1007/BF02104682 · Zbl 0838.35113
[11] DOI: 10.1063/1.532087 · Zbl 0886.35136
[12] DOI: 10.1007/s002200050338 · Zbl 0907.35110
[13] DOI: 10.1063/1.1581973 · Zbl 1062.37070
[14] DOI: 10.1088/0305-4470/23/7/018 · Zbl 0713.35087
[15] DOI: 10.1016/0375-9601(84)90693-5
[16] DOI: 10.1016/0375-9601(85)90033-7
[17] DOI: 10.1063/1.528881 · Zbl 0705.58024
[18] DOI: 10.1007/BF01211044 · Zbl 0607.35075
[19] DOI: 10.1016/S0370-2693(00)00663-8 · Zbl 0973.37047
[20] DOI: 10.1142/S0217732398001261
[21] DOI: 10.1088/0305-4470/31/30/016 · Zbl 0928.35171
[22] DOI: 10.1063/1.532736 · Zbl 0952.37035
[23] DOI: 10.1063/1.532741 · Zbl 0952.37033
[24] DOI: 10.1142/9789812777065_0029
[25] DOI: 10.1088/0305-4470/30/2/023 · Zbl 0947.37039
[26] DOI: 10.1016/S0378-4371(96)00225-7
[27] Ma W. X., American Mathematical Monthly 104 pp 566–
[28] DOI: 10.1088/0305-4470/25/16/017 · Zbl 0769.58031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.