zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An integral equation in conformal geometry. (English) Zbl 1154.45004
Summary: Motivated by Carleman’s proof of the isoperimetric inequality in the plane, we study the problem of finding a metric with zero scalar curvature maximizing the isoperimetric ratio among all zero scalar curvature metrics in a fixed conformal class on a compact manifold with boundary. We derive a criterion for the existence and make a related conjecture.

45G05Singular nonlinear integral equations
53A30Conformal differential geometry
Full Text: DOI EuDML arXiv
[1] Adams, R. A.: Sobolev spaces, Pure and applied mathematics 65 (2003)
[2] Ii, A. Baernstein; Taylor, B. A.: Spherical rearrangements, sub-harmonic functions and $\ast $-functions in n-space, Duke math. J. 43, 245-268 (1976) · Zbl 0331.31002 · doi:10.1215/S0012-7094-76-04322-2
[3] Carleman, T.: Zur theorie der minimalflächen, Math. Z. 9, 154-160 (1921) · Zbl 48.0590.02 · http://jfm.sub.uni-goettingen.de/JFM/digit.php?an=JFM+48.0590.02
[4] Escobar, J. F.: The yamabe problem on manifolds with boundary, J. differential geom. 35, No. 1, 21-84 (1992) · Zbl 0771.53017
[5] Escobar, J. F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of math. (2) 136, No. 1, 1-50 (1992) · Zbl 0766.53033 · doi:10.2307/2946545
[6] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order, (1998) · Zbl 1042.35002
[7] F.B. Hang, X.D. Wang, X.D. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., in press · Zbl 1173.26321 · doi:10.1002/cpa.20193
[8] S. Jacobs, An isoperimetric inequality for functions analytic in multiply connected domains, Mittag-Leffler Institute report, 1972
[9] Lee, J. M.; Parker, T. H.: The yamabe problem, Bull. amer. Math. soc. (N.S.) 17, No. 1, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[10] Lions, P. L.: The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. mat. Iberoamericana 1, No. 2, 45-121 (1985) · Zbl 0704.49006
[11] Stein, E. M.; Weiss, G.: Introduction to Fourier analysis on Euclidean spaces, Princeton mathematical series 32 (1971) · Zbl 0232.42007