×

\(N(k)\)-quasi Einstein manifolds satisfying certain conditions. (English) Zbl 1154.53311

Summary: We consider \(N(k)\)-quasi Einstein manifolds satisfying the conditions \(\mathcal R(\xi,X)\cdot \mathcal P=0,\mathcal P(\xi, X)\cdot S=0\) and \(\mathcal P(\xi,X)\cdot \mathcal P=0\). We construct physical examples of \(N(k)\)-quasi Einstein space-times.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chaki, M.C.; Maity, R.K., On quasi Einstein manifolds, Publ math debrecen, 57, 3-4, 297-306, (2000) · Zbl 0968.53030
[2] Chaki, M.C.; Ghoshal, P.K., Some global properties of quasi Einstein manifolds, Publ math debrecen, 63, 4, 635-641, (2003) · Zbl 1057.53030
[3] De, U.C.; Ghosh, G.C., On quasi Einstein manifolds, Period math hungar, 48, 1-2, 223-231, (2004) · Zbl 1059.53030
[4] De, U.C.; Ghosh, G.C., On quasi Einstein manifolds. II, Bull Calcutta math soc, 96, 2, 135-138, (2004) · Zbl 1060.53038
[5] De UC, Ghosh GC. On quasi Einstein and special quasi Einstein manifolds. In: Proceedings of the international conference on mathematics and its applications (ICMA 2004), Kuwait: Kuwait University Department of Mathematics Computer Science; 2005. p. 178-91.
[6] De, U.C.; Ghosh, G.C., On conformally flat special quasi Einstein manifolds, Publ math debrecen, 66, 1-2, 129-136, (2005) · Zbl 1075.53039
[7] De, U.C.; Sengupta, J.; Saha, D., Conformally flat quasi-Einstein spaces, Kyungpook math J, 46, 3, 417-423, (2006) · Zbl 1120.53008
[8] Einstein, A., Grundzuge der relativitats theory, (2002), Springer Berlin
[9] Ghosh, G.C.; De, U.C.; Binh, T.Q., Certain curvature restrictions on a quasi Einstein manifold, Publ math debrecen, 69, 1-2, 209-217, (2006) · Zbl 1121.53031
[10] El Naschie, M.S., Gödel universe, dualities and high energy particles in E-infinity, Chaos, solitons & fractals, 25, 3, 759-764, (2005) · Zbl 1073.83531
[11] El Naschie, M.S., Is einstein’s general field equation more fundamental than quantum field theory and particle physics?, Chaos, solitons & fractals, 30, 3, 525-531, (2006)
[12] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Pure and applied mathematics, vol. 103, (1983), Academic Press Inc. New York
[13] Özgür, C.; Tripathi, M.M., On the concircular curvature tensor of an \(N(k)\)-quasi Einstein manifold, Math pannon, 18, 1, 95-100, (2007) · Zbl 1164.53012
[14] Tanno, S., Ricci curvatures of contact Riemannian manifolds, Tôhoku math J, 40, 441-448, (1988) · Zbl 0655.53035
[15] Tripathi, M.M.; Kim, J.S., On \(N(k)\)-quasi Einstein manifolds, Commun Korean math soc, 22, 3, 411-417, (2007) · Zbl 1168.53321
[16] Yano, K.; Kon, M., Structures on manifolds, Series in pure mathematics, vol. 3, (1984), World Scientific Publishing Co. Singapore · Zbl 0557.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.