On nonseparable Erdős spaces. (English) Zbl 1154.54021

Let \(\mu\) be an infinite cardinal and \(p\geq1\). Consider the space \[ \ell_{\mu}^{\,p}=\{x=(x_{\alpha})_{\alpha\in\mu}\in{\mathbb R}^{\mu}: \sum_{\alpha\in\mu}| x_{\alpha}| ^p<\infty\} \] with the topology generated by the norm \(| | x_{\alpha}| | _p= (\sum_{\alpha\in\mu}| x_{\alpha}| ^p)^{1/p}\), which is a generalization of the Banach space \(\ell^{\,p}(=\ell_{\omega}^{\,p})\). In this paper, the authors study subspaces \({\mathcal E}_{\mu}=(\prod_{\alpha\in\mu}E_{\alpha})\cap \ell_{\mu}^{\,p}\) of \(\ell_{\mu}^{\,p}\), where each \(E_{\alpha}\) is a subset of \(\mathbb R\). General separable metrizable spaces \({\mathcal E}_{\omega}\) were studied by the first author in [Proc. Edinb. Math. Soc., II. Ser. 48, No. 3, 595–601 (2005; Zbl 1152.54347)]. The authors generalize the results obtained there to an arbitrary cardinal number \(\mu\). Indeed, they prove the following: Assume that \({\mathcal E}_{\mu}\) is not empty and that ind\(\,E_{\alpha}=0\) for every \(\alpha\in\mu\). For each \(m\in{\mathbb N}\) let \(\eta(m)=(\eta(m)_{\alpha})_{\alpha\in\mu}\in {\mathbb R}^{\mu}\), where each \(\eta(m)_{\alpha}=\sup\{| a| :a\in E_{\alpha} \cap [-1/m,\,1/m]\}\) and \(\sup\emptyset=0\). Then the following statements are equivalent: (1) \(| | \eta(m)| | _p=\infty\) for each \(m\in{\mathbb N}\); (2) there exists an \(x\in\prod_{\alpha\in\mu}E_{\alpha}\) with \(| | x| | _p=\infty\) and \(\lim_{\alpha\in\mu}x_{\alpha}=0\); (3) every nonempty clopen subset of \({\mathcal E}_{\mu}\) is unbounded; and (4) ind\(\,{\mathcal E}_{\mu}>0\). They also obtain a classification theorem for complete spaces \({\mathcal E}_{\mu}\): If \({\mathcal E}_{\mu}\) is topologically complete, ind\(\,{\mathcal E}_{\mu}>0\) and each \(E_{\alpha}\) is zero-dimensional, then there exist discrete spaces \(X\) and \(Y\) such that \({\mathcal E}_{\mu}\) is homeomorphic to \({\mathfrak E}_c\times X^{\omega}\times Y\), where \({\mathfrak E}_c\) means complete Erdős space. Furthermore, as an application of the results, they show that ind\(\,{\mathcal E}_{\mu}=\text{Ind}\,{\mathcal E}_{\mu}=\dim{\mathcal E}_{\mu}\).


54F45 Dimension theory in general topology
54F65 Topological characterizations of particular spaces


Zbl 1152.54347
Full Text: DOI


[1] M. Abry, J. J. Dijkstra and J. van Mill, On one-point connectifications, Topology Appl., 154 (2007), 725-733. · Zbl 1111.54031
[2] J. J. Dijkstra, A criterion for Erdős spaces, Proc. Edinb. Math. Soc., 48 (2005), 595-601. · Zbl 1152.54347
[3] J. J. Dijkstra, Characterizing stable complete Erdős space, · Zbl 1246.01050
[4] J. J. Dijkstra and J. van Mill, Homeomorphism groups of manifolds and Erdős space, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 29-38. · Zbl 1078.57033
[5] J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Canad. J. Math.,
[6] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Amer. Math. Soc., · Zbl 1204.57041
[7] R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, 10 , Heldermann Verlag, Lemgo, 1995. · Zbl 0872.54002
[8] P. Erdős, The dimension of the rational points in Hilbert space, Ann. of Math., 41 (1940), 734-736. · Zbl 0025.18701
[9] W. Hurewicz, Sur la dimension des produits Cartésiens, Ann. of Math., 36 (1935), 194-197. · Zbl 0011.04101
[10] K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fund. Math., 150 (1996), 97-112. · Zbl 0861.54028
[11] A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math., 49 (1960/1961), 301-319. · Zbl 0099.17701
[12] P. Roy, Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc., 68 (1962), 609-613. · Zbl 0111.35303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.